LIU Jinzhao, LIU Lintao, LIANG Xinghui, YE Zhourun, LI Honglei. Application of Density Anomaly Depth Detection Using Gravity Gradient Eigenvectors and Multiscale Analysis Approach[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 322-330. DOI: 10.13203/j.whugis20140235
Citation: LIU Jinzhao, LIU Lintao, LIANG Xinghui, YE Zhourun, LI Honglei. Application of Density Anomaly Depth Detection Using Gravity Gradient Eigenvectors and Multiscale Analysis Approach[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 322-330. DOI: 10.13203/j.whugis20140235

Application of Density Anomaly Depth Detection Using Gravity Gradient Eigenvectors and Multiscale Analysis Approach

Funds: The National Natural Science Foundation of China, No. 41304023; the National Major Scientific Instruments and Equipment Development Projects,No.2011YQ120045.
More Information
  • Received Date: April 26, 2015
  • Published Date: March 04, 2016
  • Compared with the conventional gravity measurements,gravity gradient measurements reflect the structural characteristics of the underground density anomaly with higher sensitivity and spatial resolution. Airborne and satellite gravity gradient survey systems have been put into use on account of continuous technological innovation, whilst wide range and high precision gravity gradient measurements are available.Therefore, the main challenge is analysis,processing and interpretation of extensive gravity gradient data. This paper addresses depth detection of underground density anomalies based on eigenvectors corresponding to the principle eigenvalue of the gravity gradient. As density anomalies of different buried depths have different wavelengths,we can split the gravity gradient tensor into different frequency bands taking advantage of the multiscale analysis approach, thereby enhancing the detection ability to detect deeper density anomalies.Through the analysis of the synthetic and measured gravity gradient data, our results show that the gravity gradient eigenvector and multiscale analysis approach can effectively determine the depth information of density anomalies. The proposed methos is robust to interference sources and random noise.
  • [1]
    Zuidweg K, Mumaw G R . Airborne Gravity Gradiometry For Exploration Geophysics——The First 5 Years[OL].http://www.hgk.msb.gov.tr/dergi/makaleler/OZEL18/ozel18_46.pdf,2014
    [2]
    Dransfield M H. Airborne Gravity Gradiometry in the Search for Mineral Deposits[J].Exploration,2007,7:341-354
    [3]
    Dransfield M H. Airborne Gravity Gradiometry [D]. Australia:University of Western Australia, 1994
    [4]
    Luo Zhicai, Zhou Boyang, Zhong Bo, et al. Outlier Detection of Satellite Gravity Gradiometry Data[J].Geomatics and Information Science of Wuhan University, 2012, 37(12): 1 392-1 396(罗志才,周波阳,钟波,等.卫星重力梯度测量数据的粗差探测[J].武汉大学学报·信息科学版,2012,37(12): 1 392-1 396)
    [5]
    Xu Tianhe,He Kaifei.Accuracy Evaluation Method of GOCE SGG Data Based on Satellite Crossovers[J].Geomatics and Information Science of Wuhan University,2011,36(5):617-620(徐天河,贺凯飞.利用交叉点不符值对GOCE卫星重力梯度数据进行精度评定[J].武汉大学学报·信息科学版,2011,36(5):617-620)
    [6]
    Pedersen L B, Rasmussen T M .The Gradient Tensor of Potential Field Anomalies:Some Implications on Data Collection and Data Processing of Maps[J].Geophysics,1990,55(12):1 558-1 566
    [7]
    BellR E, Anderson R, Pratson L. Gravity Gradiometry Resurfaces[J].The Leading Edge,1997, 16(1):55-59
    [8]
    Zhang Changyou, Mushayandebvu M F, Reid A B,et al.Euler Deconvolution of Gravity Tensor Gradient Data[J].Geophysics,2000,65(2):512-520
    [9]
    Mikhailov V, Pajot G, Diament M, et al.Tensor Deconvolution:A Method to Locate Equivalent Sources from Full Tensor Gravity Data[J].Geophysics,2007, 72(5): 161-169
    [10]
    Mataragio J, Kieley J .Application of Full Tensor Gradient Invariants in Detection of Intrusion-Hosted Sulphide Mineralization:Implications for Deposition Mechanisms[J].Mining Geoscience,2009,27:95-98
    [11]
    Beiki M.Analytic Signals of Gravity Gradient Tensor and Their Application to Estimate Source Location [J].Geophysics,2010,75(6):159-174
    [12]
    Beiki M, Pedersen L B .Eigenvector Analysis of Gravity Gradient Tensor to Locate Geologic Bodies[J].Geophysics,2010,75(6):137-149
    [13]
    Qruc B .Depth Estimation of Simple Causative Sources from Gravity Gradient Tensor Invariants and Vertical Component[J].Pure and Applied Geophysics, 2010,167(10):1 259-1 272
    [14]
    Qruc B .Edge Detection and Depth Estimation Using a Tilt Angle Map from Gravity Gradient Data of the Kozakli-Central Anatolia Region,Turkey[J].Pure and Applied Geophysics,2011,168(10): 1 769-1 780
    [15]
    Jiang Fuyu,Gao Likun,Huang Linyun.Study on Gravity Gradient Tensor of Oil-Gas Model[J].Journal of Jilin University(Earth Science Edition),2011,41(2):545-551(蒋甫玉,高丽坤,黄麟云.油气模型的重力梯度张量研究[J].吉林大学学报(地球科学版),2011,41(2):545-551)
    [16]
    Ma Guoqing,Du Xiaojuan,Li Lili.Comparison of the Tensor Local Wavenumber Method With the Conventional Local Wavenumber Method for Interpretation of Total Tensor Data of Potential Fields[J].Chinese J Geophys, 2012,55(7): 2 450-2 461(马国庆,杜晓娟,李丽丽.解释位场全张量数据的张量局部波数法及其与常规局部波数法的比较[J].地球物理学报,2012,55(7): 2 450-2 461)
    [17]
    Fitz Gerald D J,Paterson R .Inversion of Gravity Gradiometry for a Basin Fault Network in an Oil Application in Brazil,Using 3D“Worming”[C]. The 13th International Congress of the Brazilian Geophysical Society,Brazil, 2013
    [18]
    Wedge D .Mass Anomaly Depth Estimation from Full Tensor Gradient Gravity Data[C].Applications of Computer Vision(WACV),IEEE Workshop on,Clearwater, Florida,2013
    [19]
    Wedge D,Sivarajah Y,Holden E J,et al.Mass Anomaly Visualisation and Depth Estimation from Full Tensor Gradient Gravity Data[J].ASEG Extended Abstracts,2013(1):1-5
    [20]
    Liu Lintao, Hsu Houze. Inversion and Normalization of Time-Frequency Transform[J].Applied Mathematics & Information Sciences,2012(6):67-74
    [21]
    Christensen A .Results from FALCON Airborne Gravity Gradiometer Surveys over the Kauring AGG Test Site[J].ASEG Extended Abstracts,2013(1):1-4
    [22]
    Martinez C, Li Y G.Understanding Gravity Gradiometry Processing and Interpretation Through the Kauring Test Site Data[J].ASEG Extended Abstracts,2012(1):1-4
    [23]
    Hofmann-Wellenhof B, Moritz H. Physical Geodesy[M]. New York: Springer Science & Business Media, 2006
  • Related Articles

    [1]GUO Jiachun, LIU Yi, SHEN Wenbin, SHI Guigang. Concept Analysis of Map Projection and Its Applications Based on Manifold Mapping Principle[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2313-2322. DOI: 10.13203/j.whugis20230138
    [2]JIAO Chenchen, LI Songlin, LI Houpu, BIAN Shaofeng, ZHONG Yexun. Non‑iterative Algorithm for Calculating the Reference Latitude of Conformal Conic Projection[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 301-307. DOI: 10.13203/j.whugis20200301
    [3]ZENG Xiaoniu, LI Xihai, LIU Jihao, NIU Chao, HOU Weijun. Simultaneous Interpolation and Denoising Method for Airborne Gravity Data Based on Improved Projection onto Convex Sets Theory[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1555-1562. DOI: 10.13203/j.whugis20180470
    [4]LIU Wenchao, WEN Chaojiang, BIAN Hongwei, ZHENG Xiaobing. An Improved Method of Polar Ellipsoid Transverse Mercator Projection Based on Double Projection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1138-1143. DOI: 10.13203/j.whugis20180028
    [5]SUN Weiwei, JIANG Man, LI Weiyue. Band Selection Using Sparse Self-representation for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 441-448. DOI: 10.13203/j.whugis20150052
    [6]LIAO Li, ZHOU Xueqin, LI Qingqing, CHEN Lu, ZHOU Jianzhong. A Dual Iterative Clustering Based Fuzzy Projection Pursuit Clustering Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 932-938. DOI: 10.13203/j.whugis20140152
    [7]ZHAO Hu, LI Lin, GONG Jianya. Universal Map Projection Selection[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 244-247.
    [8]CHENMi, YIYaohua, LIDeren, QINQianqing. Application of Projection Pursuit Based on Dynamical Evolutionary Algorithm to Anomaly Target Detection in Hyperspectral Images[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 55-58.
    [9]Chen Yongqi. Selection of Projection Technique and Reduction of Geodetic Observations for Huge Engineering Project SSC[J]. Geomatics and Information Science of Wuhan University, 1993, 18(2): 10-14.
    [10]Hu Yuju. The Possibility of Making Further Additions to the Map Projection Classifications——On the Poly-eylindrical Projection[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 55-61.
  • Cited by

    Periodical cited type(5)

    1. 李殷娜,李正强,郑杨,侯伟真,徐文斌,马??,樊程,葛邦宇,姚前,史正. 基于非负矩阵分解的中红外地表特性光谱重建方法. 光谱学与光谱分析. 2024(02): 563-570 .
    2. 钟雷洋,周颖,高松,夏吉喆,李珍,李晓明,乐阳,李清泉. 突发公共卫生事件下的人口流动模式变化识别. 武汉大学学报(信息科学版). 2024(07): 1237-1249 .
    3. 李玉,甄畅,石雪,朱磊. 基于波段影像统计信息量加权K-means聚类的高光谱影像分类. 控制与决策. 2021(05): 1119-1126 .
    4. 赵玉英,任明武. 基于SNMF聚类与类间可分性因子的高光谱波段选择. 计算机与数字工程. 2021(09): 1884-1888 .
    5. 曾梦,宁彬,蔡之华,谷琼. 使用深度对抗子空间聚类实现高光谱波段选择. 计算机应用. 2020(02): 381-385 .

    Other cited types(2)

Catalog

    Article views (1304) PDF downloads (406) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return