WU Hui, LIU Yongbo, QIN Chengzhi, LIU Junzhi, JIANG Jingchao, ZHU A-Xing. Parallelization of an Optimization Algorithm for Beneficial Watershed Management Practices[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 202-207. DOI: 10.13203/j.whugis20140048
Citation: WU Hui, LIU Yongbo, QIN Chengzhi, LIU Junzhi, JIANG Jingchao, ZHU A-Xing. Parallelization of an Optimization Algorithm for Beneficial Watershed Management Practices[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 202-207. DOI: 10.13203/j.whugis20140048

Parallelization of an Optimization Algorithm for Beneficial Watershed Management Practices

Funds: The National High Technology Research and Development Program of China (863 Program), No. 2011AA120305; the National Science and Technology Support Program, No. 2013BAC08B03-4; the Major Science and Technology Program for Water Pollution Control and Treatment, No. 2013ZX07103006-005.
More Information
  • Received Date: February 19, 2014
  • Published Date: February 04, 2016
  • The optimization of beneficial management practices (or beneficial management practices, BMPs) is a typical case of complex geo-computation; a computation-intensive search for optimal solutions of watershed BMPs through many iterative watershed model simulations. This paper presents a parallelization of the epsilon non-dominated sorted genetic algorithm (ε-NSGA-Ⅱ), an increasingly widely-used algorithm for BMPs optimization. The proposed parallel optimization algorithm was designed based on a master-slave parallelization strategy and implemented using the message passing interface (MPI). A case study executed on an IBM cluster for the Meichuan Jiang watershed (about 6366 km2) in the Lake Poyang basin shows that the proposed parallel BMPs optimization algorithm performs well. When the count of cores used in the case study increased (8~512 cores), the proposed parallel optimization algorithm delivered a higher speedup ratio. The speedup ratio reached 310 when 512 cores were used. In this case study, the parallel efficiency of the proposed parallel BMPs optimization algorithm decreased with an increase of the count of cores. The parallel efficiency ranged from 0.61 to 0.91, demonstrating that the proposed algorithm achieves good parallel performance.
  • [1]
    Logan T J. Agricultural Best Management Practices for Water-Pollution Control-Current issues[J]. Agriculture Ecosystems & Environment, 1993, 46(1-4):223-321
    [2]
    Ripa M, Leone A, Garnier M, et al. Agricultural Land Use and Best Management Practices to Control nonpoint Water Pollution[J]. Environmental Management, 2006, 38(2):253-266
    [3]
    Rao N S, Easton Z M, Schneiderman E M, et al. Modeling Watershed-scale Effectiveness of Agricultural Best Management Practices to Reduce Phosphorus Loading[J]. Journal of Environmental Management, 2009, 90(3):1385-1395
    [4]
    Arabi M, Govindaraju R S, Hantush M M. Cost-effective Allocation of Watershed Management Practices Using a Genetic Algorithm[J]. Water Resources Research, 2006, 42(10):W10429-1-14
    [5]
    Gitau M W, Chiang L C, Sayeed M, et al. Watershed Modeling Using Large-Scale Distributed Computing in Condor and the Soil and Water Assessment Tool model[J]. SIMULATION, 2012, 88(3):365-380
    [6]
    Rouholahnejad E, Abbaspour K C, Vejdani M, et al. A Parallelization Framework for Calibration of Hydrological Models[J]. Environmental Modelling & Software, 2012, 31(5):28-36
    [7]
    Li Jian, Li Deren, Shao Zhenfeng. A Streaming Data Delaunay Triangulation Algorithm Based on Parallel Computing[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):794-798(李坚, 李德仁, 邵振峰. 一种并行计算的流数据Delaunay构网算法[J]. 武汉大学学报·信息科学版, 2013, 38(7):794-798)
    [8]
    Qi Kunlun, Chen Yumin, Wu Huayi, et al. Parallel processing in Eigenfunction-based Spatial Filtering Using MPI+OpenMP Hybrid Parallelization[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6):742-750(祁昆仑, 陈玉敏, 吴华意, 等. MPI+OpenMP环境下的特征函数空间滤值并行化方法研究[J]. 武汉大学学报·信息科学版, 2013, 38(6):742-750)
    [9]
    Maringanti C, Chaubey I. High Performance Computing Application to Address Non-point Source Pollution at a Watershed Level[C]. American Society of Agricultural and Biological Engineers Annual International Meeting. Reno, NV, 2009
    [10]
    Kollat J B, Reed P M. The Value of Online Adaptive Search:A Performance Comparison of NSGAⅡ, ε-NSGAⅡ and εMOEA[C]. Third International Conference, EMO 2005, Guanajuato, Mexico, 2005
    [11]
    Kollat J B, Reed P M. Comparing State-of-the-Art Evolutionary Multi-objective Algorithms for Long-term Groundwater Monitoring Design[J]. Advances in Water Resources, 2006, 29(6):792-807
    [12]
    Devireddy V, Reed P. Efficient and Reliable Evolutionary Multiobjective Optimization Using ε-dominance Archiving and Adaptive Population Sizing[C]. Genetic and Evolutionary Computation Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 2004
    [13]
    Gropp W, Lusk E, Doss N, et al. A High-performance, Portable Implementation of the MPI Message Passing Interface Standard[J]. Parallel Computing, 1996, 22(6):789-828
    [14]
    Liu J, Zhu A, Liu Y, et al. A Layered Approach to Parallel Computing for Spatially Distributed Hydrological Modeling[J]. Environmental Modelling & Software, 2014, 51(1):221-227
    [15]
    Chaubey I, Maringanti C, Popp J. Development of a Multiobjective Optimization Tool for the Selection and Placement of Best Management Practices for Nonpoint Source Pollution Control[J]. Water Resources Research, 2009, 45(6):W06406-1-15
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return