ZHAO Jianhu, DONG Jiang, KE Hao, ZHANG Hongmei. High Precision GPS Tide Measurement Method in a Far-Distanceand Transformation Model for the Vertical Datum[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 761-766. DOI: 10.13203/j.whugis20130314
Citation: ZHAO Jianhu, DONG Jiang, KE Hao, ZHANG Hongmei. High Precision GPS Tide Measurement Method in a Far-Distanceand Transformation Model for the Vertical Datum[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 761-766. DOI: 10.13203/j.whugis20130314

High Precision GPS Tide Measurement Method in a Far-Distanceand Transformation Model for the Vertical Datum

Funds: The National Natural Science Foundation of China,Nos.41376109,41176068,40976061;Tianjin Tanggu Scienceand Technology Development Fund,No.2012CYH05-04.
More Information
  • Received Date: July 08, 2013
  • Revised Date: June 04, 2015
  • Published Date: June 04, 2015
  • Based on postprocessor GPS PPK technology,we carried out the research on long-distance tide ob-servation and extraction,the determination of vertical datum and the construction of vertical-datum transfor-mation model.A model for calculating a height series for instantaneous water surface was researched,mean-while,the best cut-off periods for tidal extraction for anchored and on-the-fly status are proposed.Finally,based on long-term anchor PPK and tide-gauge tidal levels for different situations,a determination ofMSL and chart datum as well as the models for calculating their geodetic heights were investigated andproposed.A method to establish a seamless chart datum geodetic height model is presented.An testproject showed that the accuracy of GPS tide level reference to chart datum measurement method aspresented in paper can be better than 10cm when the GPS baseline is less than 100km.
  • Related Articles

    [1]ZHAI Ruoming, HAN Xianquan, GAN Xiaoqing, ZOU Jingui, ZOU Shuangchao, WAN Peng, LI Jianzhou. Extraction of Line Segments from Indoor Point Clouds under Building Geometric Regularization Constraints[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240384
    [2]LIU Yawen, ZHANG Ying, CHEN Quan. Vehicle Point Cloud Data Enhancement Method Combined with Panoramic Image[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1015-1020. DOI: 10.13203/j.whugis20180332
    [3]YU Anbin, MEI Wensheng. An Efficient Management Method for Massive Point Cloud Data of Metro Tunnel Based on R-tree and Grid[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1553-1559. DOI: 10.13203/j.whugis20170419
    [4]ZHU Qing, LI Shiming, HU Han, ZHONG Ruofei, WU Bo, XIE Linfu. Multiple Point Clouds Data Fusion Method for 3D City Modeling[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1962-1971. DOI: 10.13203/j.whugis20180109
    [5]LU Xiaoping, ZHU Ningning, LU Fengnian. An Elliptic Cylindrical Model for Tunnel Filtering[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1476-1482. DOI: 10.13203/j.whugis20140389
    [6]FANG Fang, CHENG Xiaojun. A Fast Data Reduction Method for Massive Scattered Point Clouds Based on Slicing[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1353-1357.
    [7]YING Shen, MAO Zhengyuan, LI Lin, XU Guang. Point Cloud Segmentation of 3D Rabbit Base 3D Voronoi[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 358-361.
    [8]TUO Lei, KANG Zhizhong, XIE Yuancheng, WANG Baoqian. Continuously Vertical Section Abstraction for Deformation Monitoring of Subway Tunnel Based on Terrestrial Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 171-175,185.
    [9]SUI Lichun, ZHANG Yibin, ZHANG Shuo, CHEN Wei. Filtering of Airborne LiDAR Point Cloud Data Based on Progressive TIN[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1159-1163.
    [10]ZHAN Qingming ZHOU Xingang, XIAO Yinghui, YU Liang, . 对古建筑激光扫描点云进行分割、识别,并利用Hough变换和最小二乘法从点云中提取直线和圆,取得了较满意的结果。对两种算法的提取效果进行了比较。[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 674-677.
  • Cited by

    Periodical cited type(22)

    1. 万冠军,苏涛. 移动式三维激光扫描在轨道交通结构变形监测中的应用. 北京测绘. 2024(07): 1015-1019 .
    2. 李佳田,阿晓荟,王聪聪,高鹏,朱志浩,晏玲. 利用高帧频相机检测运动控制轴精细形变. 武汉大学学报(信息科学版). 2022(03): 388-395 .
    3. 赵立都,张双成,向中富,马下平,周银,胡川,冯红刚,陈茂霖,蒋俊秋. 地面三维激光扫描点云应用于滑坡监测中基准统一研究. 灾害学. 2022(02): 84-88 .
    4. 甘立彬. 基于三维激光扫描技术的隧道工程测量与建模. 工程勘察. 2021(06): 58-61 .
    5. 严慧敏. 三维激光扫描在隧道断面测量中应用研究——以宁杭高速公路梯子山隧道为例. 测绘地理信息. 2021(06): 108-111 .
    6. 张辛,向巍,丁涛,宋韬. 基于三维激光扫描技术的穿黄隧洞形变检测研究. 人民长江. 2020(09): 129-134 .
    7. 浦仕贵,甘淑,杨敏. 面向不同分辨率点云的NURBS曲面构建偏差分析比较. 地质灾害与环境保护. 2020(03): 72-76 .
    8. 王峰,王清泉,王红新,温立委. 三维激光扫描技术在地铁工程测量的应用综述. 工程勘察. 2019(01): 56-60 .
    9. 吴俊杰. 高负荷光栅传感网络异常节点数据挖掘方法研究. 激光杂志. 2019(02): 68-72 .
    10. 陈智聪. 桥梁模型的三维激光扫描变形分析及精度评定. 四川建材. 2019(05): 205-206 .
    11. 祝明然. 三维激光测量技术在大型复杂钢结构工程建造中的应用. 测绘通报. 2019(08): 92-95 .
    12. 郝进锋,姜月利,祝庭,唐楠. 基于激光扫描数据的建筑工程质量评估. 激光杂志. 2018(05): 53-56 .
    13. 郑跃骏,岳仁宾. 基于激光扫描的交通隧洞几何形变监测方法. 北京测绘. 2018(11): 1318-1321 .
    14. 马伟丽,王健,孙文潇,陈喆. 基于NURBS曲面模型的滑坡点云形变分析. 中国科技论文. 2018(21): 2408-2412 .
    15. 王峰. 集成RTK的三维激光扫描技术测量地形的方法. 测绘通报. 2017(03): 71-75 .
    16. 梁周雁,赵富燕,孙文潇,邵为真. 基于三维激光扫描技术的地表变形监测方法研究. 测绘与空间地理信息. 2017(06): 213-216+219 .
    17. 葛聪. 激光扫描的物流条形码识别系统. 激光杂志. 2017(07): 188-191 .
    18. 唐奇军. 三维激光扫描中隧道变形监测方法分析. 中国高新技术企业. 2017(10): 218-220 .
    19. 常明,康志忠. 利用激光点云的规则面微小变形统计分析. 测绘科学. 2016(03): 138-144+57 .
    20. 林鸿,欧海平,王峰. 地面激光扫描技术在建筑变形测量中的应用探讨. 测绘通报. 2016(06): 73-76 .
    21. 曾繁轩,李亮. 基于Lagrange算子与曲面拟合的点云滤波研究. 激光杂志. 2016(08): 75-78 .
    22. 孔金玲,杨笑天,吴哲超,邵永军,袁雷,赵绍兵,先涛. 基于三维激光扫描技术的高速公路滑坡体建模及应用. 公路交通科技(应用技术版). 2015(12): 12-14 .

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return