DIAN Yuanyong, FANG Shenghui, YAO Chonghuai. The Geographic Object-based Method for Change Detection withRemote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 906-912. DOI: 10.13203/j.whugis20130053
Citation: DIAN Yuanyong, FANG Shenghui, YAO Chonghuai. The Geographic Object-based Method for Change Detection withRemote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 906-912. DOI: 10.13203/j.whugis20130053

The Geographic Object-based Method for Change Detection withRemote Sensing Imagery

Funds: The National High Technology Research and Development Program of China(863Program),No.2012AA12A304;the Fundamental Research Funds for the Central Universities,No.2012ZYTS037.
More Information
  • Author Bio:

    DIAN Yuanyong,PhD,specializes in remote sensing technology in argriculture.

  • Received Date: April 15, 2013
  • Revised Date: August 04, 2014
  • Published Date: August 04, 2014
  • Objective This paper proposes a geographical object-based method for change detection with high reso-lution images based on the changing areas distributed as a clustered type.This algorithm utilizes theMean-Shift segmentation algorithm to extract a geographic object,and then uses the gray informationof the geographic object with the EM algorithm to automatically extract changed and unchanged areas.This method considers spatial neighborhood information which can avoid the isolation and discrete dis-connected areas in change results when using apixel-based method.This method also reduces inter-vention when determining the change threshold value.Groups of three different spatial resolution ima-ges(QuickBird,SPOT,TM images)are used to verify this proposed geographic object-based changedetection algorithm and compared the accuracy and precision with a pixel-base method.Our resultsshow that the accuracy with object-based change detection method on QuickBird,SPOT and TM ima-ges was 91.1%,87.3% and 84.3%,while for the pixel-based method are 86.41%,82.48% and81.02%respectively.These results illustrate that the object-based change detection method has high-er change detection accuracy than the pixel based approach.Moreover,the object-based method hasbetter accuracy for high spatial resolution than in middle or low resolution images.
  • [1]
    Dian Yuanyong.Research on Change Detection inRemote Sensing Imagery[D].Wuhan:Wuhan Uni-versity,2005(佃袁勇.基于遥感影像的变化检测研究[D].武汉:武汉大学,2005)[2] Sun Xiaoxia,Zhang Jixian,Yan Qin,et al.A Sum-mary on Current Techniques and Prospects of Re-mote Sensing Change Detection[J].Remote SensingInformation,2011,1:119-123(孙晓霞,张继贤,燕琴,等.遥感影像变化检测方法综述及展望[J].遥感信息,2011,1:119-123)[3] Li Deren.Change Detection from Remote SensingImages[J].Geomatics and Information Sciences ofWuhan University,2003,28(Special Issue):7-12(李德仁.利用遥感影像进行变化检测[J].武汉大学学报·信息科学版,2003,28(特刊):7-12)[4] Bruzzone L,Prieto D F.Automatic Analysis of theDifference Image for Unsupervised Change Detec-tion[J].IEEE Geoscience and Remote Sensing,2000,38(3):1171-1182[5] Wan Youchuan,Shen Shaohong,Zhang Jingxiong.Change Detection of Multi-time Remote Sensing Im-ages Based on Statistics Models[J].Geomatics andInformation Sciences of Wuhan University,2008,33(7):669-672(万幼川,申邵洪,张景雄.基于概率统计模型的遥感影像变化检测[J].武汉大学学报·信息科学版,2008,33(7):669-672)[6] Ma Guorui,Li Pingxiang,Qin Qianqing.Based onFusion and GCM Change Detection Approach of Re-mote Sensing Images[J].Journal of Remote Sens-ing,2006,10(6):847-853(马国瑞,李平湘,秦 前清.基于融合和广义高斯模型的遥感影像变化检测[J].遥感学报,2006,10(6):847-853)[7] Bruzzone L,Prieto D F.An Adaptive Semiparamet-ric an Context-Based Approach to UnsupervisedChange Detection in Multi-temporal Remote SensingImages[J].IEEE Image Process,2002,11(4):452-466[8] Daniel C Z,Victor H.Gradual Land Cover ChangeDetection Based on Multi-temporal Fraction Images[J].Pattern Recognition,2012,45(8):2927-2937[9] Wang Yan,Shu Ning,Gong Yan.A Study of LandUse Change Detection Based on High ResolutionRemote Sensing Images[J].Remote Sensing forLand & Resources,2012,92(1):43-47(王琰,舒宁,龚龑.高分辨率遥感影像土地利用变化检测方法研究[J].国土资源遥感,2012,92(1):43-47)[10]Chen Jianyu,Mao Zhihua,Philpot B,et al.Detec-ting Changes in High-resolution Satellite CoastalImagery Using an Image Object Detection Approach[J].International Journal of Remote Sensing,2013,34(7):2432-2453[11]Shu Ning.Aspects of the Theories and Methodolo-gies for Remote Sensed Image Processing and Anal-ysis[J].Geomatics and Information Sciences ofWuhan University,2007,32(11):1007-1010(舒宁.关于遥感影像处理分析的理论与方法之若干问题[J].武汉大学学报·信息科学版,2007,32(11):1007-1010)[12]Ping L,Andre S,Norman K,et al.Object-orientedChange Detection for Landslide Rapid Mapping[J].IEEE Geoscience and Remote Sensing Letter,2011,8(4):701-705[13]Lizarazo I.Quantitative Land Cover Change Analy-sis Using Fuzzy Segmentation[J].InternationalJournal of Applied Earth Observation and Geoin-formation,2012,15(0):16-27[14]Hazel G G.Object-level Change Detection in Spec-tral Imagery[J].IEEE Transaction on Geoscienceand Remote Sensing,2001,39(3):553-561[15]Chen G,Hay G J,Carvalho L M T,et al.Object-based Change Detection[J].International Journalof Remote Sensing,2012,33(14):4434-4457[16]Dronova I,Gong P,Wang L.Object-based Analy-sis and Change Detection of Major Wetland CoverTypes and Their Classification Uncertainty Duringthe Low Water Period at Poyang Lake,China[J].Remote Sensing of Environment,2011,115(12):3220-3236[17]Hichri H,Bazi Y,Alajlan N,et al.InteractiveSegmentation for Change Detection in MultispectralRemote-sensing Images[J].IEEE Geoscience andRemote Sensing Letters,2013,10(2):298-302[18]Bazi Y,Melgani F,Alsharari H.UnsupervisedChange Detection in Multispectral Remotely SensedImagery with Level Set Methods[J].IEEE Geosci-ence and Remote Sensing,2010,48(8):3178-3187[19]Blaschke T.Object Based Image Analysis for Re-mote Sensing[J].ISPRS Journal of Photogram-metry and Remote Sensing,2010,65(1):2-16[20]Comaniciu D,Meer P.Mean-Shift:A Robust Ap-proach Toward Feature Space Analysis[J].IEEETransactions on Pattern Analysis and Machine In-telligence,2002,24(5):603-619[21]Johnson R D,Kasischke E S.Change Vector Anal-ysis:a Technique for the Multispectral Monitoringof Land Cover and Condition[J].InternationalJournal of Remote Sensing,1998,19(3):411-426[22]Bovolo F,Bruzzone L.A Theoretical Frameworkfor Unsupervised Change Detection Based onChange Vector Analysis in the Polar Domain[J].IEEE Geoscience and Remote Sensing,2007,45(1):218-236[23]Osmar A C J,Renato F G,Alan R G,et al.A NewApproach to Change Vector Analysis Using Dis-tance and Similarity Measures[J].Remote Sensing,2011,3(11):2473-2493[24]Moon T K.The Expectation-maximization Algo-rithm[J].IEEE Signal Processing Magazine,1996,13(6):47-60[25]Ming Dongping,Ci Tianyu,Cai Hongyue,et al.Semivariogram-based Spatial Bandwidth Selectionfor Remote Sensing Image Segmentation with Mean-Shift Algorithm[J].IEEE Geoscience and RemoteSensing Letters,2012,9(5):813-817
  • Cited by

    Periodical cited type(5)

    1. 穆庆禄,王长青,闫易浩,钟敏,冯伟,梁磊,朱紫彤. 不同指向模式下星载冷原子梯度仪对重力场解算精度的影响. 地球物理学报. 2024(07): 2528-2545 .
    2. 刘滔,钟波,李贤炮,谭江涛. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析. 武汉大学学报(信息科学版). 2023(05): 694-701 .
    3. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    4. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 .
    5. 陈鑑华,张兴福,陈秋杰,梁建青,沈云中. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报. 2020(09): 3251-3262 .

    Other cited types(1)

Catalog

    Article views (1384) PDF downloads (783) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return