留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于码字匹配和引力筛选的半监督协同训练算法

陈善学 尹修玄 杨亚娟

陈善学, 尹修玄, 杨亚娟. 基于码字匹配和引力筛选的半监督协同训练算法[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1386-1391,1408. doi: 10.13203/j.whugis20130840
引用本文: 陈善学, 尹修玄, 杨亚娟. 基于码字匹配和引力筛选的半监督协同训练算法[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1386-1391,1408. doi: 10.13203/j.whugis20130840
CHEN Shanxue, YIN Xiuxuan, YANG Yajuan. Semi-Supervised Collaboration Training Algorithm Based on Codeword Matching and Gravitation Selecting[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1386-1391,1408. doi: 10.13203/j.whugis20130840
Citation: CHEN Shanxue, YIN Xiuxuan, YANG Yajuan. Semi-Supervised Collaboration Training Algorithm Based on Codeword Matching and Gravitation Selecting[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1386-1391,1408. doi: 10.13203/j.whugis20130840

基于码字匹配和引力筛选的半监督协同训练算法

doi: 10.13203/j.whugis20130840
基金项目: 国家自然科学基金资助项目(61271260,61102062);重庆市教委科学技术研究资助项目(KJ1400416)。
详细信息
    作者简介:

    陈善学,博士,教授,主要从事图像处理、数据压缩方面的研究。E-mail:chee420@163.com

    通讯作者: 尹修玄,硕士生。E-mail:492989162@qq.com
  • 中图分类号: P237.3

Semi-Supervised Collaboration Training Algorithm Based on Codeword Matching and Gravitation Selecting

Funds: The National Natural Science Foundation of China, Nos.61271260, 61102062; the Scientific and Technological Research Program of Chongqing Municipal Education Commission, No. KJ1400416.
  • 摘要: 针对传统的Co-training和Tri-training协同训练算法中基分类器独立性低、迭代过程中误差累积和整体泛化性能低的问题,将多视图理论、编码理论和万有引力公式引入协同训练分类算法中,提出了改进算法,算法有效地防止了迭代过程中的误差累积,同时提高了分类系统的泛化性能。在高光谱图像分类实验中,随机地从数据集中抽取5%、10%和20%样本作为已标记训练集时,码字匹配的协同训练分类算法对比Co-training和Tri-training算法,在分类精度上平均分别提高了12.38%和6.13%,在Kappa系数上平均分别提高了0.2和0.07。进一步加入引力筛选机制,对比Co-training和Tri-training算法,在分类精度上平均分别提高了21.30%和10.99%,在Kappa系数上平均分别提高了0.26和0.13,结果表明了本文算法的有效性。
  • [1] Wang Y, Chen S, Zhou Z H. New Semi-supervised Classification Method Based on Modified Cluster Assumption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(5): 689-702
    [2] Shen W, Wu G, Sun Z, et al. Study on Classification Methods of Remote Sensing Image Based on Decision Tree Technology[C]. IEEE International Conference on Computer Science and Service System (CSSS), Nanjing,China,2011
    [3] Niu D, Wang F, Chang Y, et al. An Improved Multi-objective Differential Evolution Algorithm[C]. The 24th IEEE Chinese Control and Decision Conference (CCDC), Taiyuan,China,2012
    [4] Yan W, Yang W, Sun H, et al. Unsupervised Classification of PolInSAR Data Based on Shannon Entropy Characterization with Iterative Optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(4): 949-959
    [5] Wang Y, Chen S. Safety-Aware Semi-Supervised Classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(11): 1 763-1 772
    [6] Xiong Biao, Jiang Wanshou, Li Lelin. Gauss Mixture Model Based Semi-Supervised Classification for Remote Sensing Image [J].Geomatics and Information Science of Wuhan University,2011, 36(1): 108-112(熊彪,江万寿,李乐林.基于高斯混合模型的遥感影像半监督分类[J]. 武汉大学学报·信息科学版,2011, 36(1): 108-112)
    [7] Yan Li, Nie Qian, Hu Wenyuan,et al. Rapidly Computing Satellite Gravity Gradient Observations Along Orbit from Gravity Field Model [J].Geomatics and Information Science of Wuhan University, 2009, 34(2): 183-186(闫利,聂倩,胡文元,等.基于对象级的ADS40遥感影像分类研究[J]. 武汉大学学报·信息科学版,2009, 34(2): 183-186)
    [8] Wang Y, Chen S, Zhou Z H. New Semi-Supervised Classification Method Based on Modified Cluster Assumption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(5): 689-702
    [9] Xiong B, Jiang W, Zhang F. Semi-Supervised Classification Considering Space and Spectrum Constraint for Remote Sensing Imagery[C]. The 18th IEEE International Conference on Geoinformatics, Beijing,China,2010
    [10] Dopido I, Li J, Plaza A, et al. Semi-Supervised Classification of Hyperspectral Data Using Spectral Unmixing Concepts[C]. IEEE Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS), Naples, Italia,2012
    [11] Yan J, Yun X, Wu Z, et al. Online Traffic Classification Based on Co-training Method[C].The 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, IEEE Computer Society, Beijing,China,2012
    [12] Du W, Phlypo R, Adali T. Adaptive Feature Split Selection for Co-training: Application to Tire Irregular Wear Classification[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC,2013
    [13] Nigam K, Ghani R. Analyzing the Effectiveness and Applicability of Co-training[C].The 9th International Conference on Information and Knowledge Management, McLean, VA, 2000
    [14] Xu J, He H, Man H. DCPE Co-training: Co-training Based on Diversity of Class Probability Estimation[C]. The IEEE International Joint Conference on Neural Networks (IJCNN), Barcelona,Spain,2010
    [15] Zhou Z H, Li M. Tri-training: Exploiting Unlabeled Data Using Three Classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1 529-1 541
    [16] Du Bo, Zhang Liangpei, Li Pingxiang, et al. A Constrained Energy Minimization Method in Sub-pixel Target Detection Based on Minimization Noise Fraction [J].Journal of Image and Graphics, 2009, 14 (9):1 850-1 857(杜博,张良培,李平湘,等.基于最小噪声分离的约束能量最小化亚像元目标探测方法[J].中国图像图形学报,2009, 14 (9):1 850-1 857)
    [17] Huang R, He W. Using Tri-training to Exploit Spectral and Spatial Information for Hyperspectral Data Classification[C]. IEEE International Conference on Computer Vision in Remote Sensing (CVRS), Xiamen,China,2012
    [18] Zhang Yan, Lv Danju, Wu Baoguo. Research of Semi-Supervised Classification Algorithm Based on Tri-training [J].Computer Technology and Development, 2013, 23(7): 77-79(张雁, 吕丹桔, 吴保国. 基于 Tri-Training 半监督分类算法的研究[J].计算机技术与发展, 2013, 23(7): 77-79)
    [19] Liu X, Zhang H, Cai Z, et al. A Tri-training Based Transfer Learning Algorithm[C].The 24th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Athens,Greece,2012
    [20] Bender T, Kjaer T W, Thomsen C E, et al. Semi-Supervised Adaptation in Ssvep-based Brain-computer Interface Using Tri-training[C].The 35th IEEE Annual International Conference of Engineering in Medicine and Biology Society (EMBC), Osaka,Japan,2013
    [21] Okabe M, Yamada S. Clustering with Extended Constraints by Co-training[C]. IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT), Macau,China,2012
  • [1] 孙一帆, 余旭初, 谭熊, 刘冰, 高奎亮.  面向小样本高光谱影像分类的轻量化关系网络 . 武汉大学学报 ( 信息科学版), 2022, 47(8): 1336-1348. doi: 10.13203/j.whugis20210157
    [2] 职露, 余旭初, 邹滨, 刘冰.  多层级二值模式的高光谱影像空-谱分类 . 武汉大学学报 ( 信息科学版), 2019, 44(11): 1659-1666. doi: 10.13203/j.whugis20180004
    [3] 李鹏, 黎达辉, 李振洪, 王厚杰.  黄河三角洲地区GF-3雷达数据与Sentinel-2多光谱数据湿地协同分类研究 . 武汉大学学报 ( 信息科学版), 2019, 44(11): 1641-1649. doi: 10.13203/j.whugis20180258
    [4] 葛芸, 江顺亮, 叶发茂, 许庆勇, 唐祎玲.  基于ImageNet预训练卷积神经网络的遥感图像检索 . 武汉大学学报 ( 信息科学版), 2018, 43(1): 67-73. doi: 10.13203/j.whugis20150498
    [5] 赵波, 苏红军, 蔡悦.  一种切空间协同表示的高光谱遥感影像分类方法 . 武汉大学学报 ( 信息科学版), 2018, 43(4): 555-562, 604. doi: 10.13203/j.whugis20150579
    [6] 鲍蕊, 薛朝辉, 张像源, 苏红军, 杜培军.  综合聚类和上下文特征的高光谱影像分类 . 武汉大学学报 ( 信息科学版), 2017, 42(7): 890-896. doi: 10.13203/j.whugis20150043
    [7] 徐健, 常志国, 张小丹.  采用交替K-奇异值分解字典训练的图像超分辨率算法 . 武汉大学学报 ( 信息科学版), 2017, 42(8): 1137-1143. doi: 10.13203/j.whugis20150095
    [8] 郑肇葆, 郑宏.  利用数据引力进行图像分类 . 武汉大学学报 ( 信息科学版), 2017, 42(11): 1604-1607. doi: 10.13203/j.whugis20160457
    [9] 白璘, 刘盼芝, 惠萌.  利用小波核最小噪声分离进行高光谱影像SVM分类 . 武汉大学学报 ( 信息科学版), 2016, 41(5): 624-628,644. doi: 10.13203/j.whugis20140209
    [10] 郑肇葆, 郑宏.  带有确定度的模糊图像分类 . 武汉大学学报 ( 信息科学版), 2016, 41(4): 482-486. doi: 10.13203/j.whugis20150712
    [11] 王凯, 舒宁, 孔祥兵, 李亮.  一种多特征转换的高光谱影像自适应分类方法 . 武汉大学学报 ( 信息科学版), 2015, 40(5): 612-616. doi: 10.13203/j.whugis20130384
    [12] 王楠, 张良培, 杜博.  最小光谱相关约束NMF的高光谱遥感图像混合像元分解 . 武汉大学学报 ( 信息科学版), 2014, 39(1): 22-26.
    [13] 谭琨, 杜培军, 王小美.  利用分离性测度多类支持向量机进行高光谱遥感影像分类 . 武汉大学学报 ( 信息科学版), 2011, 36(2): 171-175.
    [14] 李祖传, 马建文, 张睿, 李利伟.  利用SVM-CRF进行高光谱遥感数据分类 . 武汉大学学报 ( 信息科学版), 2011, 36(3): 306-310.
    [15] 周源, 方圣辉, 李德仁.  利用光谱角敏感森林的高光谱数据快速匹配方法 . 武汉大学学报 ( 信息科学版), 2011, 36(6): 687-690.
    [16] 沈照庆, 舒宁, 陶建斌.  一种基于NPA的加权“1 V m”SVM高光谱影像分类算法 . 武汉大学学报 ( 信息科学版), 2009, 34(12): 1444-1447.
    [17] 王毅, 张良培, 李平湘.  基于自动搜索和光谱匹配技术的训练样本纯化算法 . 武汉大学学报 ( 信息科学版), 2007, 32(3): 216-219.
    [18] 方圣辉, 龚浩.  动态调整权重的光谱匹配测度法分类的研究 . 武汉大学学报 ( 信息科学版), 2006, 31(12): 1044-1046.
    [19] 李新双, 张良培, 李平湘, 吴波.  基于小波分量特征值匹配的高光谱影像分类 . 武汉大学学报 ( 信息科学版), 2006, 31(3): 274-277.
    [20] 李英冰, 黄勇, 郭俊义, 徐绍铨.  大气引力负荷格林函数 . 武汉大学学报 ( 信息科学版), 2003, 28(4): 435-439.
  • 加载中
计量
  • 文章访问数:  1434
  • HTML全文浏览量:  47
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-10
  • 刊出日期:  2015-10-05

基于码字匹配和引力筛选的半监督协同训练算法

doi: 10.13203/j.whugis20130840
    基金项目:  国家自然科学基金资助项目(61271260,61102062);重庆市教委科学技术研究资助项目(KJ1400416)。
    作者简介:

    陈善学,博士,教授,主要从事图像处理、数据压缩方面的研究。E-mail:chee420@163.com

    通讯作者: 尹修玄,硕士生。E-mail:492989162@qq.com
  • 中图分类号: P237.3

摘要: 针对传统的Co-training和Tri-training协同训练算法中基分类器独立性低、迭代过程中误差累积和整体泛化性能低的问题,将多视图理论、编码理论和万有引力公式引入协同训练分类算法中,提出了改进算法,算法有效地防止了迭代过程中的误差累积,同时提高了分类系统的泛化性能。在高光谱图像分类实验中,随机地从数据集中抽取5%、10%和20%样本作为已标记训练集时,码字匹配的协同训练分类算法对比Co-training和Tri-training算法,在分类精度上平均分别提高了12.38%和6.13%,在Kappa系数上平均分别提高了0.2和0.07。进一步加入引力筛选机制,对比Co-training和Tri-training算法,在分类精度上平均分别提高了21.30%和10.99%,在Kappa系数上平均分别提高了0.26和0.13,结果表明了本文算法的有效性。

English Abstract

陈善学, 尹修玄, 杨亚娟. 基于码字匹配和引力筛选的半监督协同训练算法[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1386-1391,1408. doi: 10.13203/j.whugis20130840
引用本文: 陈善学, 尹修玄, 杨亚娟. 基于码字匹配和引力筛选的半监督协同训练算法[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1386-1391,1408. doi: 10.13203/j.whugis20130840
CHEN Shanxue, YIN Xiuxuan, YANG Yajuan. Semi-Supervised Collaboration Training Algorithm Based on Codeword Matching and Gravitation Selecting[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1386-1391,1408. doi: 10.13203/j.whugis20130840
Citation: CHEN Shanxue, YIN Xiuxuan, YANG Yajuan. Semi-Supervised Collaboration Training Algorithm Based on Codeword Matching and Gravitation Selecting[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1386-1391,1408. doi: 10.13203/j.whugis20130840
参考文献 (21)

目录

    /

    返回文章
    返回