从摄影测量到计算机视觉

龚健雅, 季顺平

龚健雅, 季顺平. 从摄影测量到计算机视觉[J]. 武汉大学学报 ( 信息科学版), 2017, 42(11): 1518-1522, 1615. DOI: 10.13203/j.whugis20170283
引用本文: 龚健雅, 季顺平. 从摄影测量到计算机视觉[J]. 武汉大学学报 ( 信息科学版), 2017, 42(11): 1518-1522, 1615. DOI: 10.13203/j.whugis20170283
GONG Jianya, JI Shunping. From Photogrammetry to Computer Vision[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1518-1522, 1615. DOI: 10.13203/j.whugis20170283
Citation: GONG Jianya, JI Shunping. From Photogrammetry to Computer Vision[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1518-1522, 1615. DOI: 10.13203/j.whugis20170283

从摄影测量到计算机视觉

基金项目: 

国家自然科学基金 41471288

国家自然科学基金 61403285

详细信息
    作者简介:

    龚健雅, 博士, 教授, 中国科学院院士, 长期从事地理信息理论和摄影测量与遥感基础研究。gongjy@whu.edu.cn

    通讯作者:

    季顺平, 博士, 教授。jishunping@whu.edu.cn

  • 中图分类号: P237.9;P208

From Photogrammetry to Computer Vision

Funds: 

The National Natural Science Foundation of China 41471288

The National Natural Science Foundation of China 61403285

More Information
    Author Bio:

    GONG Jianya, PhD, professor, Academician of the Chinese Academy of Sciences, specializes in geo-informatics and photogrammetry. E-mail: gongjy@whu.edu.cn

    Corresponding author:

    JI Shunping, PhD, professor. E-mail: jishunping@whu.edu.cn

  • 摘要: 首先回顾了摄影测量的历史,从透视几何、成像设备、摄影平台、测量法和测量工具等4个方面较系统地总结了前人的贡献。其次,简要介绍了计算机视觉的起源,并从几何角度分析了计算机视觉与摄影测量之间的紧密联系,探讨了两者在实用上的一些区别。再次,从语义方面,分析了遥感学科的发展,与机器学习和计算机视觉之间的关系,以及目前深度学习和连接主义的盛行。最后,展望了摄影测量的未来,指出与计算机视觉、人工智能等学科的进一步交叉融合是摄影测量发展的必然之路。
    Abstract: We outline the history of photogrammetry from the aspects of, perspective geometry, camera, platform, measure methods and measure instruments, and summarize previous contributions to photogrammetry. A brief review of computer vision history is given. The tight connections between computer vision and photogrammetry are discussed in terms of geometric principles, and some differences in applications are also considered. From the aspect of semantics, we analyze the development of remote sensing and its relations to machine learning and computer vision, including their common approaches and different applications. The prevailing deep learning raised from connectionism is also reviewed and its successful applications in photogrammetry are analyzed. At last, we expect that the future development of photogrammetry will be more tightly cross-integrated with computer vision, machine learning and artificial intelligence.
  • 图  1   多样化的摄影平台(上排:手持仪器架、地面移动测图系统、无人机;下排:无人飞艇、国产运12航摄飞机、测绘卫星;中排:嫦娥月球探测车)

    Figure  1.   Multiple Photogrammetry Platform (up: Handheld Device, Mobile Measurement System and Drone; Below: Unmanned Airship, Domestic Yun-12 Plane for Aerial Photogrammetry and Mapping Satellite; Middle: Change Lunar Rover)

    图  2   立体坐标量测仪、模拟测图仪和解析测图仪

    Figure  2.   Stereocomparator, Analog Plotter and Analytical Plotter

    图  3   同时定位与地图构建(SLAM)

    Figure  3.   Simultaneous Localization and Mapping(SLAM)

    图  4   遥感关注的宏观问题

    Figure  4.   Those Remote Sensing Focused on Macroscopic Problems

  • [1]

    Boyle W S, Smith G E. Charge Coupled Semiconductor Devices[J]. Bell Syst. Tech, 1970, 49(4):587-593 http://d.wanfangdata.com.cn/Periodical/dianzixb201309025

    [2]

    Marr D. Vision:A Computational Investigation into the Human Representation and Processing of Visual Information[M]. Cambridge, MA:MIT Press, 1982

    [3]

    Canny A. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698 http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3d39d0b11988c5f90bf44b10d764f020

    [4]

    Horn B. Robot Vision[M]. Cambridge, MA:MIT Press, 1986

    [5]

    Duda R, Hart P. Use of the Hough Transformation to Detect Lines and Curves in Pictures[J]. Comm. ACM, 1975, 15(1):11-15 doi: 10.1145-361237.361242/

    [6]

    Marr D, Hildreth E. Theory of Edge Detection[J]. Proceedings of the Royal Society of London, Series B:Biological Sciences, 1980, 207(1167):187-217 doi: 10.1098/rspb.1980.0020

    [7]

    Forsyth D A, Ponce J. Computer Vision:A Modern Approach[M]. N J:Prentice Hall Professional Technical Reference, 2002:133-149

    [8]

    Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for Mobile Robots[J]. Artif. Intell., 2001, 128:99-141 doi: 10.1016/S0004-3702(01)00069-8

    [9]

    Marquardt D W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. Journal of the Society for Industrial & Applied Mathematics, 2006, 11(2):431-441 http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_06ede5489fc6d8b0629cf5898eb044cb

    [10]

    Hansen P C. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve[J]. Siam Review, 2006, 34(4):561-580

    [11] 王之卓.摄影测量原理[M].武汉:武汉大学出版社, 2007

    Wang Zhizhuo. Photogrammetry[M]. Wuhan:Wuhan University Press, 2007

    [12]

    Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]. Cambridge:Cambridge University Press, 2003

    [13]

    Cummins M, Newman P. FAB-MAP:Probabilistic Localization and Mapping in the Space of Appearance[J]. International Journal of Robotics Research, 2008, 27(6):647-665 doi: 10.1177/0278364908090961

    [14]

    Cortes C, Vapnik V. Support Vector Network[J]. Machine Learning, 1995, 20(3):273-297 http://d.wanfangdata.com.cn/Periodical/jsjxb201002008

    [15]

    Ho T K. Random Decision Forests[C]. International Conference on Document Analysis and Recognition, Montreal, Canada, 1995

    [16]

    Lafferty J D, Mccallum A, Pereira F C N. Conditional Random Fields:Probabilistic Models for Segmenting And Labeling Sequence Data[C]. The Eighteenth International Conference on Machine Learning, Maryland, 2001

    [17]

    Krizhevsky A, Sutskever I, Hinton G E. Image Net Classification with Deep Convolutional Neural Networks[C]. International Conference on Neural Information Processing Systems, Nevada, 2012

    [18]

    He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C].IEEE Transactions on Computer Vision and Pattern Recognition, 2015(1):770-778

    [19]

    Hinton G, Deng L, Yu D, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition:The Shared Views of Four Research Groups[J].IEEE Transactions on Signal Processing Magazine, 2012, 29(6):82-97 doi: 10.1109/MSP.2012.2205597

    [20]

    Chen Y, Lin Z, Zhao X, et al. Deep Learning-Based Classification of Hyperspectral Data[J]. IEEE Transactions on Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(6):2094-2107 http://d.wanfangdata.com.cn/Periodical/jsjgcyyy201717030

图(4)
计量
  • 文章访问数:  4396
  • HTML全文浏览量:  425
  • PDF下载量:  1797
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-06
  • 发布日期:  2017-11-04

目录

    /

    返回文章
    返回