基于信息扩散的极大似然估计

游扬声, 王新洲

游扬声, 王新洲. 基于信息扩散的极大似然估计[J]. 武汉大学学报 ( 信息科学版), 2003, 28(5): 562-565.
引用本文: 游扬声, 王新洲. 基于信息扩散的极大似然估计[J]. 武汉大学学报 ( 信息科学版), 2003, 28(5): 562-565.
YOU Yangsheng, WANG Xinzhou. Maximum Likelihood Estimation Based on the Principle of Information Diffusion[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 562-565.
Citation: YOU Yangsheng, WANG Xinzhou. Maximum Likelihood Estimation Based on the Principle of Information Diffusion[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 562-565.

基于信息扩散的极大似然估计

基金项目: 国家自然科学基金资助项目(49874002);国家测绘局测绘科技发展基金资助项目(99010)
详细信息
    作者简介:

    游扬声,博士生。现从事现代测量数据处理理论及应用研究。已发表论文4篇。E-mail:sheng_yy@sina.com

  • 中图分类号: P207.2

Maximum Likelihood Estimation Based on the Principle of Information Diffusion

  • 摘要: 提出了扩散极大似然估计方法,利用实际观测值的概率密度函数的信息扩散估计,代替了对观测值分布的主观假设,从而具有很强的自适应性。最后设计了两个算例,说明了扩散极大似然估计的过程,并考察了扩散极大似然估计的特性。
    Abstract: This paper introduces the principle of information diffusion and information diffusion estimation(IDE).And with IDE,the observation distribution can be estimated easily.Once the observation distribution is determined,the parameters can be estimated with the maximum likelihood.With IDE as the basis,the diffusion maximum likelihood(DML) estimation is presented.DML is supposed to enjoy priority because of its being free from any supposition of observation distribution.With two simulative persuasive examples,the high self-adapting and robustness of DML are discussed.
计量
  • 文章访问数:  777
  • HTML全文浏览量:  58
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-04-14
  • 发布日期:  2003-05-04

目录

    /

    返回文章
    返回