利用合成算法从LiDAR数据提取屋顶面

高广, 马洪超, 张良

高广, 马洪超, 张良. 利用合成算法从LiDAR数据提取屋顶面[J]. 武汉大学学报 ( 信息科学版), 2014, 39(10): 1225-1230.
引用本文: 高广, 马洪超, 张良. 利用合成算法从LiDAR数据提取屋顶面[J]. 武汉大学学报 ( 信息科学版), 2014, 39(10): 1225-1230.
GAO Guang, MA Hongchao, ZHANG Liang. Automatic Extraction of  Building Roofs from LiDAR Data Using a Hybridized Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1225-1230.
Citation: GAO Guang, MA Hongchao, ZHANG Liang. Automatic Extraction of  Building Roofs from LiDAR Data Using a Hybridized Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1225-1230.

利用合成算法从LiDAR数据提取屋顶面

基金项目: 国家自然科学基金资助项目61378078 国家科技支撑计划资助项目2012BAH34B02 中央高校基本科研业务费专项基金资助项目20122130202032012213020209
详细信息
    作者简介:

    高广博士生 研究方向为LiDAR数据处理与计算机视觉

  • 中图分类号: P237.9

Automatic Extraction of  Building Roofs from LiDAR Data Using a Hybridized Method

  • 摘要: 区域增长法和随机抽样一致性RANSAC算法是从LiDAR数据提取屋顶面时常用的两类方法但这两种方法都存在某些缺陷使它们的应用受到了一定限制 针对LiDAR数据中建筑物脚点的特点提出了一种融合以上两种方法优点于一体的合成算法1. 根据脚点的法向量和粗糙度特征进行屋顶面粗提取 2.在屋顶面粗提取结果的基础上利用基于先验知识的局部采样策略和区域增长方式对传统随机抽样一致性算法进行扩展实现屋顶面自动提取 3.采用投票法解决屋顶面竞争问题提高屋顶面的提取精度 实验结果表明本文设计的合成算法能够有效地提取建筑物屋顶面
    Abstract: Two types  of  approach called  re gion-growing and random sample  consensus have been proposed  for  automatic building roof  extraction.They bothhoweverhave drawbacks.In  this paperan hybridized method is  proposed  to  take  advantage of  both al gorithmsstren gths  so  that  building roofscan be extracted more precisel y and efficientl y.Firstwe calculate  the normal and rough features from LiDAR data  for  the  coarse  extraction of  building roofs.Second precise  roof-extraction  is  performed using an extended RANSAC method which takes  the  coarse  extraction results  as  the priori knowledgeand  inte grates  a re gion  growing method.Finallyapoll  strate gy  is  adopted  to  solve  the competition  problem.The  experimental  results  show that  our method can extract  intact  building roofs in  a hi ghl y automated manner.
计量
  • 文章访问数:  1214
  • HTML全文浏览量:  82
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-12
  • 发布日期:  2014-10-04

目录

    /

    返回文章
    返回