广义反距离加权空间推估法

薛树强, 杨元喜

薛树强, 杨元喜. 广义反距离加权空间推估法[J]. 武汉大学学报 ( 信息科学版), 2013, 38(12): 1435-1439.
引用本文: 薛树强, 杨元喜. 广义反距离加权空间推估法[J]. 武汉大学学报 ( 信息科学版), 2013, 38(12): 1435-1439.
XUE Shuqiang, YANG Yuanxi. Generalized Inverse Distance Weighting Methodfor Spatial Interpolation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1435-1439.
Citation: XUE Shuqiang, YANG Yuanxi. Generalized Inverse Distance Weighting Methodfor Spatial Interpolation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1435-1439.

广义反距离加权空间推估法

基金项目: 国家自然科学基金资助项目(41020144004,41104018);国家863计划资助项目(2009AA121405);总装备部航天装备总体研究发展中心资助项目(GFZX0301040309)
详细信息
    作者简介:

    薛树强,博士生,主要从事误差理论与测量平差研究。

  • 中图分类号: P207.1;P208

Generalized Inverse Distance Weighting Methodfor Spatial Interpolation

Funds: 国家自然科学基金资助项目(41020144004,41104018);国家863计划资助项目(2009AA121405);总装备部航天装备总体研究发展中心资助项目(GFZX0301040309)
  • 摘要: 提出了k阶广义反距离加权空间推估法。首先,估计空间函数在已知点处的各阶偏导数;然后,利用泰勒级数逼近原理计算待估点处的函数值,根据空间函数偏导数估值的方差协方差评价推估精度;最后,对待估点处的这些推估值进行最小二乘平差。引入了确定k阶广义反距离加权空间推估法阶次k的BIC准则,并以GPS水准推估为例进行了实验。
    Abstract: We propose a generalized inverse distance weighting method after discussing theproperties of the Taylor series expansion of the traditional inverse distance weighting func-tion.Our generalized inverse distance weighting method is established by a set of virtual ob-servation equations from the Taylor Series expansion of the spatial function.The probabilitymeasure,defined by the variance-covariance matrix,and the k-order partial derivatives esti-mation,is used to determine the weights for virtual observations.In order to optimally de-termine the parameter dimensions for the model,the criteria of BIC is introduced.The appli-cable conditions for the traditional inverse distance weighting average method are obtainedfrom the first-order generalized inverse distance weighting average method.At last,the pro-posed generalized method is applied to a GPS leveling fitting problem to verify the proposedmethod.
计量
  • 文章访问数:  1216
  • HTML全文浏览量:  68
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-24
  • 修回日期:  2013-12-04
  • 发布日期:  2013-12-04

目录

    /

    返回文章
    返回