面向灾害应急土地覆被分类的样本自动选择方法研究

温奇, 夏列钢, 李苓苓, 吴玮

温奇, 夏列钢, 李苓苓, 吴玮. 面向灾害应急土地覆被分类的样本自动选择方法研究[J]. 武汉大学学报 ( 信息科学版), 2013, 38(7): 799-804.
引用本文: 温奇, 夏列钢, 李苓苓, 吴玮. 面向灾害应急土地覆被分类的样本自动选择方法研究[J]. 武汉大学学报 ( 信息科学版), 2013, 38(7): 799-804.
WEN Qi, XIA Liegang, LI Lingling, WU Wei. Automatically Samples Selection in Disaster Emergency Oriented Land-Cover Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 799-804.
Citation: WEN Qi, XIA Liegang, LI Lingling, WU Wei. Automatically Samples Selection in Disaster Emergency Oriented Land-Cover Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 799-804.

面向灾害应急土地覆被分类的样本自动选择方法研究

基金项目: 十二五国家科技支撑计划资助项目(2011BAB01B06); 国家863计划资助项目(2012AA121305)
详细信息
    作者简介:

    温奇,博士,主要从事空间技术减灾和高分辨率遥感灾情评估方面的研究。

  • 中图分类号: P237.3

Automatically Samples Selection in Disaster Emergency Oriented Land-Cover Classification

Funds: 十二五国家科技支撑计划资助项目(2011BAB01B06); 国家863计划资助项目(2012AA121305)
  • 摘要: 通过对自动化样本选择方法进行研究,实现了局部区域内面向对象的土地覆被自动分类。首先通过模糊聚类获得影像中的候选对象样本,分别提取影像特征和先验知识中的地类特征,通过预设阈值完成样本初步筛选,然后根据先验知识进行半监督距离度量学习,完成样本的自动选择,并为最终的监督分类提供度量依据。应用舟曲泥石流灾区影像进行了实验,结果表明,本文方法与基于人工选择样本的分类结果精度非常接近,同时在多次实验中表现出较高的稳定性,相对人工方法更加客观,适合批量自动化处理。
    Abstract: The automation level of classification for remote sensing image need to be improved to satisfy the timeliness and high-precision requirements in disaster emergency monitoring and assessment.But,the artificial selection of typical samples restricts the automatic interpretation of disaster information,a problem particularly acute for the development of business operation systems.This paper implements a totally automatic object-oriented land cover classification system based on automatic sample selection.First,the candidate object samples are acquired by fuzzy clustering.Second,image features and land type features are extracted from imagery and prior knowledge,respectively.Afterward,samples can be selected by applying preset thresholds on these features.Distance metric learning is then used not only for further sample selection,but also for more accurate supervised classification.Zhouqu Debris flow disaster images are computed by this method.Results show that the classification outcomes with samples selected automatically are very close to those samples selected by hand.Our results are more stable and objective than those produced manually.Moreover,it is more convenient to batch process images automatically.
  • [1] 王卫红夏列钢,骆剑承,胡晓东,. 面向对象的遥感影像多层次迭代分类方法研究[J]. 武汉大学学报(信息科学版). 2011(10)[2] 吴一全武燕燕,. 利用NSCT和Krawtchouk矩进行图像检索[J]. 武汉大学学报(信息科学版). 2011(06)[3] 杨思全刘三超,吴玮,王磊,徐丰,和海霞,张薇,温奇,汤童,崔燕,. 青海玉树地震遥感监测应用研究[J]. 航天器工程. 2011(02)[4] 谭衢霖. 高分辨率多光谱影像城区建筑物提取研究[J]. 测绘学报. 2010(06)[5] 刘璞张远,周斌,吴嘉平,. 基于SAM和多源信息的土地利用/覆盖自动分类[J]. 浙江大学学报(工学版). 2009(09)[6] 范一大杨思全,王磊,王薇,聂娟,张宝军,. 汶川地震应急监测评估方法研究[J]. 遥感学报. 2008(06)[7] 骆剑承王钦敏,周成虎,梁怡,. 基于自适应共振模型的遥感影像分类方法研究[J]. 测绘学报. 2002(02)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-10
  • 修回日期:  2013-04-10
  • 发布日期:  2013-07-04

目录

    /

    返回文章
    返回