顾及距离与形状相似性的面状地理实体聚类

杨春成, 何列松, 谢鹏, 周校东

杨春成, 何列松, 谢鹏, 周校东. 顾及距离与形状相似性的面状地理实体聚类[J]. 武汉大学学报 ( 信息科学版), 2009, 34(3): 335-338.
引用本文: 杨春成, 何列松, 谢鹏, 周校东. 顾及距离与形状相似性的面状地理实体聚类[J]. 武汉大学学报 ( 信息科学版), 2009, 34(3): 335-338.
YANG Chuncheng, HE Liesong, XIE Peng, ZHOU Xiaodong. Clustering Analysis of Geographical Area Entities Considering Distance and Shape Similarity[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 335-338.
Citation: YANG Chuncheng, HE Liesong, XIE Peng, ZHOU Xiaodong. Clustering Analysis of Geographical Area Entities Considering Distance and Shape Similarity[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 335-338.

顾及距离与形状相似性的面状地理实体聚类

基金项目: 国家863计划资助项目(2001AA135080)
详细信息
    作者简介:

    杨春成,研究员,博士。现主要从事空间数据库与数据挖掘方面的研究工作。

  • 中图分类号: P208

Clustering Analysis of Geographical Area Entities Considering Distance and Shape Similarity

Funds: 国家863计划资助项目(2001AA135080)
  • 摘要: 与点状地理实体不同,面状地理实体不仅具有位置特征,还具有形状特征。对于面状地理实体而言,仅考虑距离因素设计聚类准则是不全面的。综合考虑距离和几何形状相似性来设计聚类准则,实现了相应的聚类算法。实验证明,该算法适合面状地理实体的聚类分析。
    Abstract: Geographical area entities are different from geographical point entities,because they have both position feature and shape feature.It is not enough for geographical area entities to be clustered if the clustering criterion just considers distance factor.The clustering criterion designed by us includes distance factor and geometry shape similarity factor.On the basis of this,the corresponding clustering algorithm was implemented.The experimental results show that the algorithm fits to clustering analysis of geographical area entities.
计量
  • 文章访问数:  1084
  • HTML全文浏览量:  41
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-14
  • 修回日期:  2009-01-14
  • 发布日期:  2009-03-04

目录

    /

    返回文章
    返回