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Clustering Analysis of Geographical Area Entities
Considering Distance and Shape Similarity

YANG Chuncheng® HE Liesong' XIE Peng' ZHOU Xiaodong*
(1 Xi’an Research Institute of Surveying and Mapping,1 Middle Yanta Road, Xi’an 710054, China)

Abstract: Geographical area entities are different from geographical point entities, because
they have both position feature and shape feature. It is not enough for geographical area enti-
ties to be clustered if the clustering criterion just considers distance factor. The clustering
criterion designed by us includes distance factor and geometry shape similarity factor. On the
basis of this, the corresponding clustering algorithm was implemented. The experimental re-
sults show that the algorithm fits to clustering analysis of geographical area entities.
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Framework for Discovering Co-location Patterns in

A Novel Spatial Co-location Pattern Mining Algorithm
Based on k-Nearest Feature Relationship

BIAN Fuling' WAN You'

(1 Research Center of Spatial Information and Digital Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

Abstract: We define a k-nearest feature based on co-location patterns, and develop k-nearest
feature co-location mining (KNFCOM) algorithm to mine this kind of co-location patterns.
The experimental results show that KNFCOM algorithm is efficient and scalable for mining
spatial co-location patterns from various large spatial datasets.
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