一种基于GNSS全系统全频点观测的多路径修正及定位模型

胡超, 王潜心, 郭忠臣, 张云龙

胡超, 王潜心, 郭忠臣, 张云龙. 一种基于GNSS全系统全频点观测的多路径修正及定位模型[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230106
引用本文: 胡超, 王潜心, 郭忠臣, 张云龙. 一种基于GNSS全系统全频点观测的多路径修正及定位模型[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230106
HU Chao, WANG Qianxin, GUO Zhongchen, ZHANG Yunlong. A GNSS system- and frequency-wide integrated multipath mitigation and positioning model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230106
Citation: HU Chao, WANG Qianxin, GUO Zhongchen, ZHANG Yunlong. A GNSS system- and frequency-wide integrated multipath mitigation and positioning model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230106

一种基于GNSS全系统全频点观测的多路径修正及定位模型

基金项目: 

国家重点研发计划(2020YFA0713502),国家自然科学基金(41874039),安徽省自然科学金(2108085QD173),天津市自然科学基金重点项目(20JCZDJC00390),2021年度宿州学院校级重点研究项目(2021yzd03)。

详细信息
    作者简介:

    胡超,博士,副教授。主要从事卫星大地测量研究。chaohu2014gnss@163.com

    通讯作者:

    王潜心,博士,教授。主要从事大地测量数据处理方法研究。wqx@cumt.edu.cn

  • 中图分类号: P208

A GNSS system- and frequency-wide integrated multipath mitigation and positioning model

  • Abstract:

    Objectives:  it is suggested that the multi-frequency GNSS technologies powerfully accelerate the development of high-performance location services. However, the information of multi-frequency and all-system GNSS observations is not fully used in the processing of positioning parameters. Due to that the fixed combination model used in the traditional GNSS PPP solution, the multi-frequency observations are ignored in the parameters estimation. In this research, A GNSS system- and frequency-wide integrated multipath mitigation and positioning model is used to improve the PPP performances.   Methods:  firstly, a code multipath delay estimation model is designed by the combination of the multi-frequency observations in the stage of observations preprocessing, where the impacts of observation noise and ionospheric error are eliminated. Secondly, the multi-frequency ionosphere-free combination is constructed in each system based on the GNSS observations of whole systems and all frequencies to fully model the multi-frequency observations of the users received. Thirdly, integrated GNSS multi-system observations, the mathematical model of all-system and all-frequency combined positioning solution is constructed.   Results:  according to the experiments of GNSS static and kinematics observations, it is indicated that:GNSS multi-frequency observations can quickly mitigate the code multipath delays, especially in the kinematics conditions, where the advantages of multi-frequency observations are significantly presented. In the kinematics positioning solutions, compared with traditional BDS-3 dual-frequency kinematics PPP, the E, N and U directions can be improved with 81.3%, 16.7% and 79.0%, respectively, by the GNSS multi-frequency combined strategy. Moreover, the convergence time is significantly shortened.   Conclusions:  therefore, it is meaningful to use the proposed multi-GNSS and multi-frequency PPP solution, which can promote the improvement of GNSS location services.

  • [1]

    Hein G. Status, Perspectives and Trends of Satellite Navigation[J]. Satellite Navigation, 2020, 1(1):22

    [2] Yang Yuanxi, Yang Chen, Ren Xia. PNT Intelligent Services[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1006-1012(杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报, 2021, 50(8):1006-1012)
    [3]

    Yang Y, Ren X, Jia X, Sun B. Development Trends of the National Secure PNT System Based on BDS[J]. Science China Earth Sciences, 2023, 66.

    [4]

    Montenbruck O., Steigenberger P., Prange L., et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service(IGS)-Achievements, Prospects and Challenges[J]. Advances in Space Research, 2017, 59(7):1671-1697

    [5]

    Yang Y., Ding Q., Gao W., et al. Principle and Performance of BDSBAS and PPP-B2b of BDS-3[J]. Satellite Navigation, 2022,3(1):5

    [6]

    Hu C., Wang Q., Wu Z., et al. A Mixed Multi-frequency Precise Point Positioning Strategy Based on the Combination of BDS-3 and GNSS Multi-frequency Observations[J]. Measurement Science and Technology, 2023, 34(2):025008

    [7] WANG Xilong, XU Xiaolong, ZHAO Qile. Signal Quality Analysis and Orbit Accuracy Verification of BDS-3[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4):611-619. (王西龙, 许小龙, 赵齐乐. 北斗三号系统信号质量分析及轨道精度验证[J]. 武汉大学学报(信息科学版), 2023, 48(4):611-619.)
    [8] Zhang Zhetao, Li Bofeng, He Xiufeng. Geometry-free Single-epoch Resolution of BDS-3 Multi-frequency Carrier Ambiguities[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1139-1148(章浙涛, 李博峰, 何秀凤. 北斗三号多频相位模糊度无几何单历元固定方法[J]. 测绘学报, 2020, 49(9):1139-1148)
    [9]

    Teunissen P., Montenbruck O. Handbook of Global Navigation Satellite Systems[M]. Springer, Berlin, 2017

    [10]

    Shi J., Ouyang C., Peng W. Assessment of BDS-3 Global Positioning Service:Ephemeris, SPP, PPP, RTK, and New Signal[J]. GPS Solutions, 2020, 24:81

    [11]

    Jin S., Su K. PPP Models and Performances from Single- to Quad-frequency BDS Observations[J]. Satellite Navigation, 2020, 1(1):13

    [12]

    Zhang Z., Li B., He X., et al. Models, Methods and Assessment of Four-frequency Carrier Ambiguity Resolution for BeiDou-3 Observations[J]. GPS Solutions, 2020, 24:96

    [13] Geng Jianghui, Chang Hua, Guo Jiang, et al. Three Multi-frequency and Multi-system GNSS High-precision Point Positioning Methods and Their Performance in Complex Urban Environment[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1):1-13(耿江辉, 常华, 郭将, 等. 面向城市复杂环境的3种多频多系统GNSS单点高精度定位方法及性能分析[J]. 测绘学报, 2020, 49(1):1-13)
    [14] Cao Xinyun, Wang Jian. Cycle-slip Detection and Repair Using GPS Triple-frequency Un-differenced Observations[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4):450-456(曹新运, 王坚. GPS三频非差观测值探测与修复周跳[J]. 武汉大学学报(信息科学版), 2014, 39(4):450-456)
    [15]

    Kuang K., Wang J., Han H. Real-time BDS-3 Clock Estimation with A Multi-frequency Uncombined Model Including New B1C/B2a Signals[J]. Remote Sensing, 2022, 14:966

    [16] Hu Chao, Wang Zhongyuan, Lvy Weicai, et al. A One-step Multipath Delay Correction Model for BeiDou Satellite Observations with Prior Constraint[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1):101-112(胡超, 王中元, 吕伟才, 等. 一种顾及先验约束的北斗观测数据多路径一步修正模型[J]. 武汉大学学报(信息科学版), 2023, 48(1):101-112)
    [17] Li Xin, Zhang Xiaohong. Comparison of Satellite-Induced Code Bias Between BDS-2 and BDS-3 Satellites[J]. Journal of Geodesy and Geodynamics, 2018, 38(2):191-194. (李昕, 张小红. BDS-2和BDS-3卫星伪距多路径偏差特性比较[J]. 大地测量与地球动力学, 2018, 38(2):191-194)
    [18]

    Han S., Rizos C. The Impact of Two Additional Civilian GPS Frequencies on Ambiguity Resolution Strategies[R]. In:Proceedings of ION 55th Annual Meeting, Alexandria VA, January 25-27, 1999:315-321

    [19] GPS/GALILEO Multi-frequency Combined Differential Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7):821-824(于兴旺, 张小红, 聂桂根. GPS/GALILEO多频组合差分定位研究[J]. 武汉大学学报(信息科学版), 2010, 35(7):821-824)
    [20]

    Zhang X., He X. BDS Triple-frequency Carrier-phase Linear Combination Models and Their Characteristics[J]. Science China:Earth Sciences, 2015, 58:896-905

    [21]

    Guo Z., Yu X., Hu C., et al. Research on Linear Combination Models of BDS Multi-frequency Observations and Their Characteristics[J]. Sustainability, 2022, 14(14):8644

    [22]

    Li B., Feng Y., Shen Y. Three Carrier Ambiguity Resolution:Distance-independent Performance Demonstrated Using Semi-generated Triple Frequency GPS Signals[J]. GPS Solutions, 2010, 14:177-184

    [23]

    Wang Z., Wang R., Wang Y., et al. Modelling and Assessment of A New Triple-frequency IF1213 PPP with BDS/GPS[J]. Remote Sensing, 2022, 14(18):4509

    [24]

    Wu Z., Wang Q., Hu C., et al. Modeling and Assessment of Five-frequency BDS Precise Point Positioning[J]. Satellite Navigation, 2022, 3(1):8

    [25]

    Guo F., Zhang X., Wang J., et al. Modeling and Assessment of Triple-frequency BDS Precise Point Positioning[J]. Journal of Geodesy, 2016, 90(11):1223-1235

    [26]

    Zhou F., Xu T. Modeling and Assessment of GPS/BDS/Galileo Triple-frequency Precise Point Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1):61-70

    [27]

    Xu G. GPS:Theory, Algorithms and Applications[M]. Springer, Berlin, 2007

    [28]

    Wu Z., Wang Q., Yu Z., et al. Modeling and Performance Assessment of Precise Point Positioning with Multi-frequency GNSS Signals[J]. Measurement, 2022, 201, 111687.

    [29]

    Takasu T, Yasuda A. A Development of the Low-cost RTK-GPS Receiver with An Open Source Program Package RTKLIB[R]. International symposium on GPS/GNSS, Seogwiposi Jungmundong, Korea, 4-6 November, 2009

    [30]

    Su M., Zheng J., Yang Y., et al. A New Multipath Mitigation Method Based on Adaptive Thresholding Wavelet Denoising and Double Reference Shift Strategy[J]. GPS Solutions, 2018,22(2):40

    [31]

    Dong D, Wang M, Chen W, et al. Mitigation of Multipath Effect in GNSS Short Baseline Positioning by the Multipath Hemispherical map[J]. Journal of Geodesy, 2016, 90(3):255-262

    [32]

    Chang G., Chen C., Yang Y., et al. Tikhonov Regularization Based Modeling and Sidereal Filtering Mitigation of GNSS Multipath Errors[J]. Remote Sensing, 2018, 10(11):1801

    [33]

    Hu C., Wang Z., Rao P., et al. One-step Correction Strategy for BDS-2/BDS-3 Satellite Observation Code Bias and Multipath Delay[J]. Acta Geodaetica et Geophysica, 2021, 56(1):29-59

    [34]

    Wanninger L., Beer S. BeiDou Ssatellite-induced Code Pseudorange Variations:Diagnosis and Therapy[J]. GPS Solutions, 2015, 19(4):639-648

计量
  • 文章访问数:  314
  • HTML全文浏览量:  25
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-03
  • 网络出版日期:  2023-07-05

目录

    /

    返回文章
    返回