采用重力梯度多尺度分析方法揭示青藏高原岩石圈结构特征

陈芷欣, 许闯, 张恒, 余杭涛, 陈浩朋, 姚朝龙

陈芷欣, 许闯, 张恒, 余杭涛, 陈浩朋, 姚朝龙. 采用重力梯度多尺度分析方法揭示青藏高原岩石圈结构特征[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220776
引用本文: 陈芷欣, 许闯, 张恒, 余杭涛, 陈浩朋, 姚朝龙. 采用重力梯度多尺度分析方法揭示青藏高原岩石圈结构特征[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220776
CHEN Zhixin, XU Chuang, ZHANG Heng, YU Hangtao, CHEN Haopeng, YAO Chaolong. Lithospheric structure feature of the Tibetan Plateau revealed by multi-scale analysis of gravity gradients[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220776
Citation: CHEN Zhixin, XU Chuang, ZHANG Heng, YU Hangtao, CHEN Haopeng, YAO Chaolong. Lithospheric structure feature of the Tibetan Plateau revealed by multi-scale analysis of gravity gradients[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220776

采用重力梯度多尺度分析方法揭示青藏高原岩石圈结构特征

基金项目: 

国家自然科学基金( 41974014, 42274004),广东省自然科学基金项目( 2022A1515010396)。

详细信息
    作者简介:

    陈芷欣,本科,工程测量技术员,主要从事大地测量学与测量工程方面研究。E-mail:1769510612@qq.com

    通讯作者:

    许闯,博士,副教授。E-mail:chuangxu@gdut.edu.cn

  • 中图分类号: P223

Lithospheric structure feature of the Tibetan Plateau revealed by multi-scale analysis of gravity gradients

  • 摘要: 目前利用重力梯度数据反演岩石圈结构存在垂向识别能力不足的问题。为此,本文利用小波多尺度分析方法对青藏高原地区垂直重力梯度扰动进行分解,并采用功率谱分析方法估计了不同小波分解阶数重力梯度扰动的场源埋深,以获取不同深度处更为精细的结构特征。进一步,根据不同阶重力梯度扰动及其平均场源深度,提取青藏高原莫霍面产生的重力梯度扰动信号,反演莫霍面地形。重力梯度扰动小波分解结果表明:小于10 km深度的浅层物质所产生的垂直梯度扰动零散分布于区域边缘和中南部;深度在20 km-50 km范围内的物质所产生的垂直梯度扰动主要分布在中西部和中南部,闭圈逐渐扩大;在约60 km深的区域,存在大型密度异常体;处于70km深度以下的下地壳和上地幔区域,密度分布无明显特征。莫霍面反演结果表明:青藏高原莫霍面地形总体上呈西深东浅分布,平均深度约为48 km,最大深度约66 km,位于( 78°E,35°N);本文反演的青藏高原莫霍面地形与CRUST1.0模型提供的莫霍面地形两者的空间格局相似,且相关性( COFF)约为0.83;与控制点莫霍面深度对比,本文反演的莫霍面地形结果精度为8.81 km,优于CRUST1.0的11.40 km。
    Abstract: Objectives: The vertical resolution of crustal structure inverted by using gravity gradients needs to be improved at present. Method: This paper employs wavelet multi-scale analysis method to decompose the vertical gravity gradient data in the Tibetean Plateau, and uses power spectrum analysis method to estimate the field source depth of gravity gradient with different wavelet decomposition orders. Further, according to the average field source depth of gravity gradients of different orders, the gravity gradient signals generated by the Moho of the Tibetan Plateau are extracted to invert the Moho topography. Results: The more detailed structural features at different depths are obtained. Conclusions: The wavelet decomposition results of gravity gradient show that the vertical gradient of disturbance generated by shallow field source less than 10 km depth is scattered in the edge and south-central of the region. The vertical gradient of the disturbance generated by the middle-level field source with a depth of 20km-50km is mainly distributed in the central and southern regions, and the closed circle gradually expands. There are large density bodies in the region of about 60 km depth. In the lower crust and upper mantle below 70 km depth, the density distribution has no obvious characteristics. The inversion results of the Moho show that the terrain of the Moho in the Tibetan Plateau is generally deep in the west and shallow in the east, with an average depth of about 48 km and a maximum depth of about 66 km, located at (78 ° E, 35 ° N). The spatial pattern of the Moho terrain in the Tibetan Plateau is similar to that provided by the CRUST1.0 model, and the correlation (COFF) is about 0.83. Compared with the control point depths, the accuracy of the inverted Moho terrain result is 8.81 km, which is better than 11.4 km of CRUST1.0.
  • [1] Zhang Yan, Cheng Shunyou, Zhao Bingkun, et al. The feature of tectonics in the Tibet Plateau from new regional gravity signals[J]. Chinese Journal of Geophysics, 2013, 56(4):1369-1380(张燕,程顺有,赵炳坤,等.青藏高原构造结构特点:新重力异常成果的启示[J].地球物理学报,2013,56(04):1369-1380)
    [2] Zhu Chuandong, Liu Jinzhao, Chen Ming, et al. The Analysis on Characteristics of Gravity Effect of Large-Scale Surface Fluid in Qinghai-Tibetan Plateau[J]. Journal of Geodesy and Geodynamics, 2020, 40(09):947-951(朱传东,刘金钊,陈铭,等.青藏高原大尺度地表流体的重力效应特征分析[J].大地测量与地球动力学,2020,40(09):947-951)
    [3] Li Qiusheng, Peng Suping, Gao Rui. A Review on the Moho Discontinuity beneath the Tibetan Plateau[J].Geological Review, 2004(06):598-612+670(李秋生,彭苏萍,高锐.青藏高原莫霍面的研究进展[J].地质论评,2004(06):598-612+670)
    [4] He Huiyou, Fang Jian, Chen Ming, et al. Moho Depth of the East China Sea Inversed Using Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):682-689(何慧优,方剑,陈铭,等.利用重力数据反演中国东海海域莫霍面深度[J].武汉大学学报(信息科学版),2019,44(05):682-689)
    [5] Lu Zhanwu, Gao Rui, Li Qiusheng, et al. Deep geophysical probe and geodynamic study on the Qinghai-Tibet Plateau (1958-2004)[J]. Chinese Journal of Geophysics, 2006, 49(3):753-770(卢占武,高锐,李秋生,等.中国青藏高原深部地球物理探测与地球动力学研究(1958-2004)[J].地球物理学报,2006(03):753-770)
    [6] Deng Wenbin, Su Danjing, Gao Yuxiao, et al. Effect of various gravity field models on the Moho topography inversion in the Tibet[J]. Science of Surveying and Mapping, 2020,45(04):1-6+12(邓文彬,苏丹竞,高宇潇,等.不同重力场模型对青藏高原莫霍面反演的影响[J].测绘科学,2020,45(04):1-6+12)
    [7]

    Xu C, Liu Z, Luo Z, et al. Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications[J]. Journal of Asian Earth Sciences,2017,138:378-386

    [8] Ning Jinsheng, Wang Zhengtao, Chao Nengfang. Research status and progress in international next generation satellite gravity measurement missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):1-8(宁津生,王正涛,超能芳.国际新一代卫星重力探测计划研究现状与进展[J].武汉大学学报信息科学版, 2016, 41(1):1-8)
    [9] Luo Zhicai, Zhong Bo, Zhou Hao, et al. Progress in determining the Earth's gravity field model by satellite gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1713-1727(罗志才,钟波,周浩,等.利用卫星重力测量确定地球重力场模型的进展[J].武汉大学学报信息科学版, 2022, 47(10):1713-1727)
    [10] Zhu Yiqing, Liang Weifeng, Chen Shi, et al. Study on mechanism of gravity field change in northeastern margin of Qinghai-Tibet Peateau[J]. Journal of Geodesy and Geodynamics, 2012,32(03):1-6(祝意青,梁伟锋,陈石,等.青藏高原东北缘重力变化机理研究[J].大地测量与地球动力学,2012,32(03):1-6)
    [11] Yang Wencai, Sun Yanyun, Yu Changqing. Crustal density deformation zones of Qinghai-Tibet Plateau and their geological implications[J]. Chinese Journal of Geophysics, 2015, 58(11):4115-4128(杨文采,孙艳云,于常青.青藏高原地壳密度变形带及构造分区[J].地球物理学报,2015,58(11):4115-4128)
    [12] Duan Hurong, Kang Mingzhe, Wu Shaoyu, et al. Uplift rate of the Tibetan Plateau constrained by GRACE time-variable gravity field[J]. Chinese Journal of Geophysics,2020, 63(12):4345-4360(段虎荣,康明哲,吴绍宇,等.利用GRACE时变重力场反演青藏高原的隆升速率[J].地球物理学报,2020,63(12):4345-4360)
    [13] Li Jinbo, Xu Chuang, Jian Guangyu, et al. Multi-scale analysis of gravity gradients in South China Sea[J]. Science of Surveying and Mapping, 2020,45(11):1-7(黎晋博,许闯,简光煜,等.中国南海重力梯度多尺度分析[J].测绘科学,2020,45(11):1-7)
    [14] Xia Chaolong. Inversion of crustal thickness of Qinghai-Xizang Plateau based on GOCE gradient data[J]. Ability and Wisdom, 2013(14):289-290(夏朝龙.基于GOCE梯度数据反演青藏高原地壳厚度[J].才智,2013(14):289-290)
    [15] Li Honglei, Fang Jian, Wang Xinsheng, et al. Lithospheric 3-D density structure beneath the Tibetan plateau and adjacent areas derived from joint inversion of satellite gravity and gravity-gradient data. Chinese Journal of Geophysics, 2017, 60(6):2469-2479(李红蕾,方剑,王新胜,等.重力及重力梯度联合反演青藏高原及邻区岩石圈三维密度结构[J].地球物理学报,2017,60(06):2469-2479)
    [16] Jiang Tao. Regional geoid determination using airborne gravimetry data[J]. Acta Geodaetica et Cartographica Sinica, 2013,42(01):152(蒋涛.利用航空重力测量数据确定区域大地水准面[J].测绘学报,2013,42(01):152)
    [17] Hou Zunze, Yang Wencai. An operational research on the wavelet analysis[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1995(03):1-9(侯遵泽,杨文采.小波分析应用研究[J].物探化探计算技术,1995(03):1-9)
    [18] Wu Lixin, Yang Mingzhi, Zhao Weiming, et al. Crustal thickness inversed from multi-scale decomposition of bouguer gravity anomalies in northeastern of QingHai-Tibet Plateau[J]. Journal of Geodesy and Geodynamics, 2011,31(01):19-23(吴立辛,杨明芝,赵卫明,等.利用重力多尺度分解资料反演青藏高原东北缘地壳厚度[J].大地测量与地球动力学,2011, 31(01):19-23)
    [19] Xuan Songbai. Gravity study on crustal structure and material migration beneath the eastern Tibetan Plateau[D]. Wuhan:Wuhan University, 2016(玄松柏.青藏高原东缘地壳结构与物质运移的重力研究[D].武汉:武汉大学,2016)
    [20] Fu Qiang, Liu Tianyou, Ma Long, et al. WAVELET TRANSFORM ANALYSES OF FAULTS DETECTION ON ISOSTATIC GRAVITY ANOMALIES:A CASE STUDY FROM THE QAIDAM BASIN AND ITS ADJACENT AREAS[J]. Seismology and Geology, 2019,41(4):960-978(付强,刘天佑,马龙,等.基于小波变换和均衡重力异常的断裂识别——以柴达木盆地及周边地区为例[J].地震地质,2019,41(04):960-978)
    [21] Chen Li, Ailixiati·Yushan, Zhu Zhiguo, et al. Multi-scale Decomposition of Wavelet of the Temporal Gravity Variation in Northern Tianshan Mountain[J]. Earthquake Research in China, 2020,36(04):935-944(陈丽,艾力夏提·玉山,朱治国,等.北天山中段时变重力场离散小波多尺度分解[J].中国地震,2020,36(04):935-944)
    [22]

    Xu C, Luo Z, Sun R, et al. Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau[J]. Geophysical Journal International, 2018, 213(3):2085-2095

    [23]

    Spector A, Grant F S. Statistical models for interpreting aeromagnetic data[J].Geophysics, 1970, 35:293-302

    [24] Xing Zhibin. Research on Theory and Methodology of Earth Gravity Field Recovery Based on GOCE Gravity Gradient data[D]. Zhengzhou:PLA Strategic Support Force Information Engineering University, 2019(邢志斌. GOCE卫星重力梯度数据恢复地球重力场理论与方法研究[D].郑州:战略支援部队信息工程大学,2019)
    [25]

    Oldenburg D W. THE INVERSION AND INTERPRETATION OF GRAVITY ANOMALIES[J]. Geophysics, 1974, 39(4):526-536

    [26] Shi Qingbin, Hu Shuanggui, Yang Lei. Inversion of moho depth in Tibetan plateau based on high-precision satellite gravity data[J]. Chinese Journal of Engineering Geophysics, 2018, 15(04):466-474(史庆斌,胡双贵,杨磊.基于高精度卫星重力数据反演青藏高原莫霍面深度[J].工程地球物理学报,2018,15(04):466-474)
    [27]

    Li H O, Xu X W, Jiang M. Deep dynamical processes in the central-southern Qinghai-Tibet Plateau-Receiver functions and travel-time residuals analysis of north Hi-Climb[J]. Science in China (Series D:Earth Sciences),2008(09):1297-1305

    [28] Gao Rui, Xiong Xiaosong, Li Qiusheng, et al. The Moho Depth of Qinghai-Tibet Plateau Revealed by Seismic Detection[J]. Acta Geoscientica Sinica, 2009,30(06):761-773(高锐,熊小松,李秋生,等.由地震探测揭示的青藏高原莫霍面深度[J].地球学报,2009, 30(06):761-773)
    [29]

    Shin Y H, Shum C K, Braitenberg C, et al. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Scientific reports, 2015, 5(1):1-7

    [30]

    Mandal P, Srinivas D, Suresh G, et al. Modelling of crustal composition and Moho depths and their Implications toward seismogenesis in the Kumaon-Garhwal Himalaya. Scientific reports, 2021, 11:14067

计量
  • 文章访问数:  253
  • HTML全文浏览量:  16
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-03
  • 网络出版日期:  2023-07-11

目录

    /

    返回文章
    返回