一种BDS非差非组合PPP中电离层功率谱密度估计方法

徐宗秋, 张鸿洋, 徐彦田, 李军, 杨南南, 石帅

徐宗秋, 张鸿洋, 徐彦田, 李军, 杨南南, 石帅. 一种BDS非差非组合PPP中电离层功率谱密度估计方法[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220752
引用本文: 徐宗秋, 张鸿洋, 徐彦田, 李军, 杨南南, 石帅. 一种BDS非差非组合PPP中电离层功率谱密度估计方法[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220752
XU Zongqiu, ZHANG Hongyang, XU Yantian, LI Jun, YANG Nannan, SHI Shuai. A Method for Estimating Ionospheric Power Spectral Density in BDS Undifferenced and Uncombined PPP[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220752
Citation: XU Zongqiu, ZHANG Hongyang, XU Yantian, LI Jun, YANG Nannan, SHI Shuai. A Method for Estimating Ionospheric Power Spectral Density in BDS Undifferenced and Uncombined PPP[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220752

一种BDS非差非组合PPP中电离层功率谱密度估计方法

基金项目: 

国家自然科学基金(42074012,42030109);辽宁省重点研发计划项目(2020JH2/10100044);辽宁省“兴辽英才计划”项目资助(XLYC2002101,XLYC2008034,XLYC2002098)。

详细信息
    作者简介:

    徐宗秋,博士,副教授,研究方向为卫星定位与导航。xuzongqiu@lntu.edu.cn

    通讯作者:

    徐彦田,博士,副研究员。xuyantian1983@163.com

  • 中图分类号: P209

A Method for Estimating Ionospheric Power Spectral Density in BDS Undifferenced and Uncombined PPP

  • 摘要: 无电离层组合模型和非差非组合模型是PPP定位中最常用的两种函数模型,非差非组合模型中电离层误差常被描述为随机游走,随机游走过程中的功率谱密度成为决定PPP定位性能的主要因素,采用经验值功率谱密度的方法没有考虑电离层小尺度变化。本文在非差非组合模型基础上,分析电离层时间相关性信息,在电离层差分时间间隔较小时观测噪声较大甚至淹没电离层的变化,为此,本文通过平滑去噪的方法削弱观测值噪声的影响,实时确定电离层功率谱密度,对非差非组合模型中的电离层延迟参数进行合理的约束,从而改善定位性能。通过对12个测站10天的BDS数据进行不同电离层模型下的解算,结果表明:相对于传统无电离层组合PPP模型,本文方法在收敛时间上缩短8%左右,水平方向精度相当,垂直方向定位精度提高28%左右。相较于功率谱密度采用经验值方法,本文方法在收敛时间上缩短9%左右,水平方向精度相当,垂直方向定位精度提高28%左右。
    Abstract: The ionosphere-free(IF)model and the undifferenced and uncombined(UDUC)model are the two most commonly used functional models in precise point positioning(PPP). In the UDUC model, the ionospheric error is often described as random walk parameter, and the power spectral density(PSD) in the process of random walk becomes the main factor determining the positioning performance of PPP. The method of determining the PSD by the empirical value can not show the small scale variation of the ionosphere. In this paper, based on the UDUC model, the time correlation information of the ionosphere is analyzed. When the difference time interval of the ionosphere is small, the observation noise is large and it will submerge the changes of the ionosphere. Hence, this paper uses the smooth denoising method to weaken the influence of the observation noise, determine the ionospheric PSD in real time, and reasonably constrain the ionospheric delay parameters in the UDUC model, so as to improve the positioning performance. The experiment was carried out through 10 days BDS observations come from 12 stations under different ionospheric models, the results show that compared with the traditional IF model, the convergence time of the method proposed in this paper is shortened by 8%, the horizontal direction accuracy is equivalent, and the vertical direction positioning accuracy is improved by about 28%. Compared with the empirical value PSD method, the convergence time of the method proposed in this paper is shortened by about 9%, the horizontal direction accuracy is equivalent, and the vertical direction positioning accuracy is improved by about 28%.
  • [1] China Satellite Navigation Office. BeiDou Navigation Satellite System Open Service Performance Standard (Version 3.0)[EB/OL]. (2021-05-26)[2022-11-15]. http://www.beidou.gov.cn/xt/gfxz/202105/P020210526215541444683.pdf. (中国卫星导航系统管理办公室.北斗卫星导航系统公开服务性能规范(3.0版)[EB/OL].(2021-05-26)[2022-11-15]. http://www.beidou.gov.cn/xt/gfxz/202105/P020210526215541444683.pdf.)
    [2]

    Dubey S, Wahi R, Gwal A K. Ionospheric Effects on GPS Positioning[J]. Advances in Space Research, 2006, 38(11):2478-2484.

    [3]

    Otsuka Y, Shinbori A, Sori T, et al. Depletions Lasting into Daytime During the Recovery Phase of a Geomagnetic Storm in May 2017:Analysis and Simulation of GPS Total Electron Content Observations[J]. Earth and Planetary Physics, 2021, 5(05):427-434.

    [4]

    Xu Z, Yang N, Xu Y, et al. BDS Precise Point Positioning Ambiguity Resolution with High Rate Data and Its Application to Seismic Displacement and Marine Surveying[J]. Earth Science Informatics, 2021, 14(4):2331-2346.

    [5] Zhang Xiaohong, Liu Gen, Guo Fei, et al. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2124-2130. (张小红, 柳根, 郭斐, 等. 北斗三频精密单点定位模型比较及定位性能分析[J]. 武汉大学学报(信息科学版), 2018, 43(12):2124-2130.)
    [6] Yan Zhongbao, Zhang Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(06):979-989. (闫忠宝, 张小红. GNSS非组合PPP部分模糊度固定方法与结果分析[J]. 武汉大学学报(信息科学版), 2022, 47(06):979-989.)
    [7]

    Shi C, Gu S, Lou Y, et al. An Improved Approach to Model Ionospheric Delays for Singlefrequency Precise Point Positioning[J]. Advances in Space Research, 2012, 49(12):1698-1708.

    [8] Wu Guanbin, Chen Junping, Bai Tianyang, et al. Wide-Area Between-Satellite SingleDifference VTEC Ionospheric Model and Its Assessment for Undifferenced and Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6):928-937. (伍冠滨, 陈俊平, 白天阳, 等. 非差非组合PPP的广域星间单差天顶电离层模型及其验证[J]. 武汉大学学报(信息科学版), 2021, 46(06):928-937.)
    [9] Gu Shengfeng, Dai Chunqi, He Chengpeng, et al. Analysis of Semi-tightly Coupled MultiGNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12):1852-1861. (辜声峰, 戴春齐, 何成鹏, 等. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析[J]. 武汉大学学报(信息科学版), 2021, 46(12):1852-1861.)
    [10] Song Weiwei, He Chengpeng, Gu Shengfeng. Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12):1832-1842. (宋伟伟, 何成鹏, 辜声峰. 不同纬度区域电离层增强PPP-RTK性能分析[J]. 武汉大学学报(信息科学版), 2021, 46(12):1832-1842.)
    [11]

    Li Z, Yuan Y, Wang N, et al. SHPTS:towards a New Method for Generating Precise Global Ionospheric TEC Map Based on Spherical Harmonic and Generalized Trigonometric Series Functions[J]. Journal of Geodesy, 2015, 89:331-345.

    [12] Wei Shengtao, Li Dehai, Chen Bingzhu, et al. Convergence Analysis of PPP Additional Regional Ionospheric Constraints[J]. Journal of Geodesy and Geodynamics, 2021, 041(005):525-529. (魏盛桃, 李得海, 陈秉柱, 等. 附加区域电离层约束的PPP定位收敛性分析[J]. 大地测量与地球动力学, 2021, 041(005):525-529.)
    [13]

    Zhang X, Ren X, Chen J, et al. Investigating GNSS PPP-RTK with External Ionospheric Constraints[J]. Satellite Navigation, 2022, 3(1):1-13.

    [14]

    Zhao Q, Wang Y T, Gu S, et al. Refining Ionospheric Delay Modeling for Undifferenced and Uncombined GNSS Data Processing[J]. Journal of Geodesy, 2019, 93:545-560.

    [15]

    Tang W, Liu W, Zou X, et al. Improved Ambiguity Resolution for URTK with Dynamic Atmosphere Constraints[J]. Journal of Geodesy, 2016, 90:1359-1369.

    [16]

    Zou X, Wang Y, Deng C, et al. Instantaneous BDS+GPS Undifferenced NRTK Positioning with Dynamic Atmospheric Constraints[J]. GPS Solutions, 2018, 22:1-11.

    [17]

    Teunissen P J G, Odijk D, Zhang B. PPP-RTK:Results of CORS Network-based PPP with Integer Ambiguity Resolution[J]. Journal of Aeronautics, Astronautics and Aviation. Series A, 2010, 42(4):223-230.

    [18]

    Teunissen P J G. The Geometry-free GPS Ambiguity Search Space with a Weighted Ionosphere[J]. Journal of Geodesy, 1997, 71(6):370-383.

    [19] Fu Li, Gao Bing, Liu Mingbo. Discussion on Processing Method of Measurement Colored Noise Data[J]. Journal of Astronautic Metrology and Measurement, 2022, 42(04):56-59+76. (付莉, 高冰, 刘明波. 测量数据中色噪声处理方法探讨[J]. 宇航计测技术, 2022, 42(04):56-59+76.)
    [20]

    Zhu H, Li J, Tang L, et al. Improving the Stochastic Model of Ionospheric Delays for BDS Long-Range Real-Time Kinematic Positioning[J]. Remote Sensing, 2021, 13(14):2739.

    [21]

    Li B, Qin Y, Liu T. Geometry-based Cycle Slip and Data Gap Repair for Multi-GNSS and Multi-frequency Observations[J]. Journal of Geodesy, 2019, 93(3):399-417.

    [22]

    Zhou F, Dong D, Li W, et al. GAMP:An Open-source Software of Multi-GNSS Precise Point Positioning Using Undifferenced and Uncombined Observations[J]. GPS Solutions, 2018, 22(2):1-10.

    [23] Zhou Feng, Xu Tianhe. Modeling and Assessment of GPS/BDS/Galileo Triple-frequency Precise Point Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(01):61-70. (周锋, 徐天河. GPS/BDS/Galileo三频精密单点定位模型及性能分析[J]. 测绘学报, 2021, 50(01):61-70.)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  35
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-03
  • 网络出版日期:  2023-07-16

目录

    /

    返回文章
    返回