高精度三维跟踪抛物运动的重力垂直梯度测量方法

郭金运, 吴渴知, 金鑫, 周茂盛, 刘新

郭金运, 吴渴知, 金鑫, 周茂盛, 刘新. 高精度三维跟踪抛物运动的重力垂直梯度测量方法[J]. 武汉大学学报 ( 信息科学版), 2025, 50(3): 462-468. DOI: 10.13203/j.whugis20220711
引用本文: 郭金运, 吴渴知, 金鑫, 周茂盛, 刘新. 高精度三维跟踪抛物运动的重力垂直梯度测量方法[J]. 武汉大学学报 ( 信息科学版), 2025, 50(3): 462-468. DOI: 10.13203/j.whugis20220711
GUO Jinyun, WU Kezhi, JIN Xin, ZHOU Maosheng, LIU Xin. A Method to Determine Vertical Gravity Gradient by High-Precision 3D Tracking Parabolic Motion[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 462-468. DOI: 10.13203/j.whugis20220711
Citation: GUO Jinyun, WU Kezhi, JIN Xin, ZHOU Maosheng, LIU Xin. A Method to Determine Vertical Gravity Gradient by High-Precision 3D Tracking Parabolic Motion[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 462-468. DOI: 10.13203/j.whugis20220711

高精度三维跟踪抛物运动的重力垂直梯度测量方法

基金项目: 

国家自然科学基金 42430101

国家自然科学基金 42274006

详细信息
    作者简介:

    郭金运,博士,教授,主要从事空间大地测量、物理大地测量、海洋大地测量等方面的研究。 jinyunguo1@126.com

    通讯作者:

    金鑫,博士。jx10101010@126.com

A Method to Determine Vertical Gravity Gradient by High-Precision 3D Tracking Parabolic Motion

  • 摘要:

    重力垂直梯度是探究地球重力场的关键信息,在大地测量学、地球物理学和地球动力学等领域中的应用越来越广泛,因此,快速、准确地获取高精度的重力垂直梯度信息愈发迫切。提出了一种基于三维跟踪测量抛物运动的重力垂直梯度测量方法,在真空环境中,利用三维跟踪技术动态追踪抛物运动下落的靶球,获得靶球运动的三维坐标时间序列,建立轨迹观测方程,并利用最小二乘法提取出重力垂直梯度信息。对所提测量方法设计了仿真实验并进行精度验证,实验结果表明,当落体测量精度达到微米级时,此测量方法的主要误差源是三维跟踪测量误差和时间测量误差,其中时间测量误差对重力垂直梯度测量精度的影响较小。对抛物运动坐标时间序列同时加入标准差为10 μm的三维跟踪测量随机误差和标准差为10 ns时间测量随机误差后,统计重力垂直梯度的测量误差,其均方根值约为1.31 E(1 E=10-9/s2)。该方法在测量重力垂直梯度时是有效的,并且具有较好的稳定性。

    Abstract:
    Objectives 

    The vertical gravity gradient plays an important role in the exploration of the earth gravity field. It is more and more widely used in the fields of geodesy, geophysics and geodynamics. Therefore, it is urgent to obtain the vertical gravity gradient with high accuracy quickly and accurately.

    Methods 

    A new method to determine vertical gravity gradients by 3D tracking parabolic motion is proposed. In a vacuum environment, the 3D tracking technology is used to dynamically track the parabolic falling target to obtain the 3D coordinate time series of the target movement, establish the trajectory observation equation, and extract the gravity vertical gradient using the least square method.

    Results 

    When the measurement accuracy of falling target reaches micron level, the main error sources of this measurement method are 3D tracking measurement error and time measurement error, of which the time measurement error has a small impact on the measurement accuracy of vertical gravity gradient. After adding the 3D tracking measurement random error with the standard deviation (STD) is 10 μm and the time measurement random error with the STD is 10 ns to the parabolic motion coordinate time series, the root mean square of the measurement error of vertical gravity gradient is about 1.31 E (1 E=10-9/s2).

    Conclusions 

    The proposed method of vertical gravity gradient measurement is effective and has good stability.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220711
  • 图  1   重力垂直梯度测量原理示意图

    Figure  1.   Sketch Map of Vertical GravityGradient Measurement

    图  2   抛物运动测量重力垂直梯度的理论精度

    Figure  2.   Theoretical Accuracy of Measuring VerticalGravity Gradient by Parabolic Motion

    图  3   三维跟踪测量误差对抛物运动测量重力垂直梯度的影响

    Figure  3.   Influence of 3D Tracking Measurement Error on Vertical Gravity Gradient by Parabolic Motion

    图  4   时间测量误差对抛物运动测量重力垂直梯度的影响

    Figure  4.   Influence of Time Measurement Error on Vertical Gravity Gradient by Parabolic Motion

    表  1   抛物运动测量重力垂直梯度误差统计/E

    Table  1   Error Statistics of Vertical Gravity GradientMeasured by Parabolic Motion/E

    测量随机误差最大值最小值平均值标准差均方根值
    10 μm+10 ns10.77-8.970.061.311.31
    下载: 导出CSV

    表  2   三维跟踪测量误差对抛物运动测量重力垂直梯度的影响统计

    Table  2   Statistics of the Influence of 3D TrackingMeasurement Error on Vertical Gravity Gradientby Parabolic Motion

    三维跟踪测量随机误差/μm最大值/E最小值/E平均值/E标准差/E均方根值/E
    11.12-0.950.010.330.35
    57.09-5.020.050.650.65
    1010.06-12.30-0.021.301.31
    下载: 导出CSV

    表  3   时间测量误差对抛物运动测量重力垂直梯度的影响统计

    Table  3   Statistics of the Influence of Time MeasurementError on Vertical Gravity Gradient by Parabolic Motion

    时间测量随机误差/ns最大值/E最小值/E平均值/E标准差/E均方根值/E
    10.010.000.000.000.00
    50.03-0.030.000.010.01
    100.06-0.060.000.020.02
    下载: 导出CSV
  • [1] 边少锋, 张赤军. 地形起伏对重力垂直梯度影响的计算[J]. 物探化探计算技术, 1999, 21(2): 133-140.

    BIAN Shaofeng, ZHANG Chijun. Computation of Topographic Effects on Vertical Gravity Gradient[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1999, 21(2): 133-140.

    [2]

    ZAHOREC P, MIKUŠKA J, PAPČO J, et al. Towards the Measurement of Zero Vertical Gradient of Gravity on the Earth’s Surface[J]. Studia Geophysica et Geodaetica, 2015, 59(4): 524-537.

    [3]

    BORNEMISZA S. Vertical Gradient of Gravity[J]. Geophysics, 2002, 23(2): 359-360.

    [4] 赵珞成, 罗志才, 刘浩, 等. 重力梯度同步观测方法[J]. 武汉大学学报(信息科学版), 2012, 37(4): 428-431.

    ZHAO Luocheng, LUO Zhicai, LIU Hao, et al. Simultaneous Observation Method of Gravity Gradient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 428-431.

    [5] 张赤军, 边少锋, 周旭华, 等. 重力垂直梯度的测定及其应用与潜力[J]. 地球物理学进展, 2007, 22(6): 1686-1691.

    ZHANG Chijun, BIAN Shaofeng, ZHOU Xuhua, et al. Determination of Gravity Vertical Gradient and Its Application Potential[J]. Progress in Geophysics, 2007, 22(6): 1686-1691.

    [6]

    HEILAND C A. A Rapid Method for Measuring the Profile Components of Horizontal and Vertical Gravity Gradients[J]. Geophysics, 1943, 8(2): 119-133.

    [7]

    DIFRANCESCO D. Advances and Challenges in the Development and Deployment of Gravity Gradiometer Systems[C]//EGM 2007 International Workshop, Capri, Italy, 2007.

    [8] 党亚民, 章传银, 晁定波, 等. 综合利用海岸带GNSS水准和重力数据精密确定中国高程基准偏差[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1644-1648.

    DANG Yamin, ZHANG Chuanyin, CHAO Dingbo, et al. Precise Determination of National Height Datum Discrepancy from Combination of GNSS/Leveling and Gravity Data in Coastal Areas of China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1644-1648.

    [9] 陈楚江, 孙凤华, 李德仁. 西藏墨脱地区工程精化似大地水准面的研究[J]. 武汉大学学报(信息科学版), 2004, 29(7): 638-641.

    CHEN Chujiang, SUN Fenghua, LI Deren. Refining Engineering Quasi-Geoid of Mutuo, Xizang, China[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 638-641.

    [10] 王谦身. 微重力测量: 理论、方法与应用[M]. 北京: 科学出版社, 1995.

    WANG Qianshen. Microgravity Measurement: Theory, Method and Application[M]. Beijing: Science Press, 1995.

    [11]

    FERNÁNDEZ J, TIAMPO K F, RUNDLE J B, et al. On the Interpretation of Vertical Gravity Gradients Produced by Magmatic Intrusions[J]. Journal of Geodynamics, 2005, 39(5): 475-492.

    [12] 宛家宽, 罗志才, 赵珞成. 利用FG5绝对重力仪观测数据确定重力垂直梯度[J]. 地球物理学报, 2018, 61(1): 119-126.

    WAN Jiakuan, LUO Zhicai, ZHAO Luocheng. Determining Vertical Gradients of Gravity by Observations of the FG5 Absolute Gravimeter[J]. Chinese Journal of Geophysics, 2018, 61(1): 119-126.

    [13]

    HIPKIN R G. Absolute Determination of the Vertical Gradient of Gravity[J]. Metrologia, 1999, 36(1): 47-52.

    [14]

    PÁLINKÁŠ V, KŘEN P, VAĽKO M, et al. On the Determination of Vertical Gravity Gradients by Corner-Cube Absolute Gravimeters[J]. Metrologia, 2019, 56(5): 055006.

    [15] 田桂娥, 陈晓东, 吴书清, 等. FG5绝对重力仪观测数据的实测重力潮汐改正[J]. 武汉大学学报(信息科学版), 2020, 45(6): 870-878.

    TIAN Guie, CHEN Xiaodong, WU Shuqing, et al. Correction of Measured Gravity Tides with FG5 Absolute Gravimeter Observations[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 870-878.

    [16] 张为民, 王勇, 詹金刚, 等. 中国地壳运动观测网络中的绝对重力测定[J]. 武汉大学学报(信息科学版), 2004, 29(3): 227-230.

    ZHANG Weimin, WANG Yong, ZHAN Jingang, et al. Absolute Gravity Determination in the Crustal Movement Observation Network of China[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 227-230.

    [17] 郭金运, 金鑫, 边少锋, 等. 垂线偏差测量的固体潮和海潮改正[J]. 测绘学报, 2022, 51(7): 1215-1224.

    GUO Jinyun, JIN Xin, BIAN Shaofeng, et al. Corrections of Solid Earth Tide and Ocean Tide for Measurement of Deflection of the Vertical[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1215-1224.

    [18] 李红雨, 曹诚, 李凤婷, 等. 航空、航海重力和重力梯度在海洋、未知陆地战略勘探的发展[J]. 地球物理学进展, 2019, 34(1): 316-325.

    LI Hongyu, CAO Cheng, LI Fengting, et al. Deve⁃lopment of Airborne and Marine Gravity Exploration and Gravity Gradient Strategic Exploration for the Ocean and Unknown Land[J]. Progress in Geophy⁃sics, 2019, 34(1): 316-325.

    [19] 孙中苗, 翟振和, 李迎春. 航空重力仪发展现状和趋势[J]. 地球物理学进展, 2013, 28(1): 1-8.

    SUN Zhongmiao, ZHAI Zhenhe, LI Yingchun. Status and Development of Airborne Gravimeter[J]. Progress in Geophysics, 2013, 28(1): 1-8.

    [20] 许厚泽, 孙和平. 国际GGP计划和武汉超导重力仪观测[J]. 武汉大学学报(信息科学版), 2003, 28(S1): 18-22.

    XU Houze, SUN Heping. GGP Project and Observations Using Wuhan Superconducting Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 18-22.

    [21]

    BODDICE D, METJE N, TUCKWELL G. Quantifying the Effects of Near Surface Density Variation on Quantum Technology Gravity and Gravity Gra-dient Instruments[J]. Journal of Applied Geophysics, 2019, 164: 160-178.

    [22]

    WANG Q B, ZHOU R, SUN W. Precision Analysis of Gravity Vertical Gradient Measurement Based on CG-5 Relative Gravimeter[J]. Advanced Materials Research, 2011, 301: 1036-1041.

    [23]

    JIN X, LIU X, GUO J Y, et al. A Novel All-Weather Method to Determine Deflection of the Vertical by Combining 3D Laser Tracking Free-Fall and Multi-GNSS Baselines[J]. Remote Sensing, 2022, 14(17): 4156.

    [24] 刘硕, 刘光博, 刘尚国, 等. 激光跟踪仪的测量误差解析与精度仿真[J]. 测绘工程, 2021, 30(6): 21-26.

    LIU Shuo, LIU Guangbo, LIU Shangguo, et al. Measurement Error Analysis and Accuracy Simulation of Laser Tracker[J]. Engineering of Surveying and Mapping, 2021, 30(6): 21-26.

    [25]

    HU C A, LUO S T, LI W Z, et al. Application of Laser Tracker in the Industrial Measurement Field[J]. Journal of Physics: Conference Series, 2021, 1820(1): 012119.

    [26]

    SAWYER D, FRONCZEK C. Laser Tracker Compensation Using Displacement Interferometry[J]. American Society for Precision Engineering, 2003, 30: 351-358.

    [27]

    CVITANIC T, MELKOTE S, BALAKIRSKY S. Improved State Estimation of a Robot End-Effector Using Laser Tracker and Inertial Sensor Fusion[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 38: 51-61.

    [28] 徐亚明, 郑琪, 管啸. Leica AT960激光跟踪仪测量精度分析[J]. 测绘地理信息, 2020, 45(1): 8-12.

    XU Yaming, ZHENG Qi, GUAN Xiao. Precision Analysis of Leica AT960 Absolute Laser Tracker[J]. Journal of Geomatics, 2020, 45(1): 8-12.

图(4)  /  表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  36
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 网络出版日期:  2023-03-30
  • 刊出日期:  2025-03-04

目录

    /

    返回文章
    返回