深水目标定位声速剖面自适应分层方法

孙文舟, 朱忆, 曾安敏, 赵翔

孙文舟, 朱忆, 曾安敏, 赵翔. 深水目标定位声速剖面自适应分层方法[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220662
引用本文: 孙文舟, 朱忆, 曾安敏, 赵翔. 深水目标定位声速剖面自适应分层方法[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220662
SUN Wenzhou, ZHU Yi, ZENG Anmin, ZHAO Xiang. A self-adaptive layering method of the sound velocity profile for deep-water object positioning[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220662
Citation: SUN Wenzhou, ZHU Yi, ZENG Anmin, ZHAO Xiang. A self-adaptive layering method of the sound velocity profile for deep-water object positioning[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220662

深水目标定位声速剖面自适应分层方法

基金项目: 

青岛海洋科学与技术试点国家实验室“问海计划”(2021WHZZB1001);国家重点研发计划(2020YFB0505801);国家自然科学基金(41874016)。

详细信息
    作者简介:

    孙文舟,博士,工程师,主要从事海洋大地测量方面的研究。1519374228@qq.com

    通讯作者:

    孙文舟,博士,工程师,主要从事海洋大地测量方面的研究。1519374228@qq.com

  • 中图分类号: P229

A self-adaptive layering method of the sound velocity profile for deep-water object positioning

  • 摘要: 针对高精度水下目标定位声线跟踪法计算效率低的问题。本文提出了基于声速剖面面积差的自适应分层方法,通过优化声速剖面分层策略,减小分层数的思路降低计算量。首先,根据声线跟踪法计算斜距值时传播时间与声速剖面面积差近似线性负相关的关系,确定了声速剖面面积差与测距误差的关系,通过设置测距误差最大容许值得到声速剖面面积差的最大容许值;其次,先按照声速梯度垂向变化规律进行结构化分层,然后在此基础上,再以声速剖面面积差的最大容许值作为约束条件进行自适应分层。最后,用南海实测声速剖面数据对算法进行验证,与10m等间隔分层方法对比,计算效率提高了86%的情况下因声速剖面简化引入的测距误差从厘米级降低到了毫米级。
    Abstract: Objectives: Acoustic ray-tracing method is an important means to solve the problem of acoustic ray bending in the process of propagation. It was used to calculate the slant range of deep-water object positioning can effectively attenuating the influence of acoustic ranging system error. However, the accompanying problem is the reduction of computational efficiency. To solve this problem, we put forward a self-adaptive layering method based on the area difference of sound velocity profile (SVP), which reduces the computation by optimizing the layering strategy of the SVP. Methods: Firstly, the relationship between the SVP area difference and ranging error is established according to the research of thirteenth reference. Based on this relationship, the constant-gradient and the zero-gradient ray-tracing method were analyzed which is more suitable for slant range calculation. And the maximum tolerance of the SVP area difference is obtained by setting the maximum tolerance of ranging error. Secondly, the structural layering is carried out according to the change law of sound velocity gradient, and the refined layering is carried out on constraint of the maximum tolerance of SVP area difference. Results: The results show that: (1) The measured SVP in the same sea area and during a similar time can be considered as the same cluster SVP, which satisfies the Eq. (1). The average value of multiple measured SVPs can be approximately considered as the background SVP to estimate the linear coefficient k0. (2) The adaptive layering method can optimize the layering scheme according to the changing law of the SVP curve. The layering interval will increase where the gradient change rate is small and reduce the layering interval where the gradient change rate is large, so as to reduce the number of layers as much as possible under the condition of meeting the maximum tolerance ranging error. (3) Compared with equally spaced layering 10m, when the number of layering is reduced by 86%, the ranging error caused by layering is lowered from centimeter level to millimeter level, which proves the effectiveness of this method. Conclusions: The adaptive method has strong robustness and practicability. It can adjust the layering strategy according to the structural characteristics of SVP and usage scenarios of the offshore operation. Since the number of layers of the SVP is greatly reduced, the calculation speed is greatly improved. This will be helpful for large amount of data process or real-time underwater acoustic navigation.
  • [1]

    Kinugasa N, Tadokoro K, Kato T, et al. Estimation of Temporal and Spatial Variation of Sound Speed in Ocean From GNSS-A Measurements for Observation Using Moored Buoy[J]. Progress in Earth and Planetary Science, 2020, 7:21.

    [2]

    Sakic P, Ballu V, Crawford W, et al. Acoustic Ray Tracing Comparisons in the Context of Geodetic Precise off-shore Positioning Experiment[J]. Marine Geodesy, 2018, 41(4):315-320.

    [3] Yang Yuanxi, Xu Tianhe, Xue Shuqiang. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):1-8. (杨元喜,徐天河,薛树强.我国海洋大地测量基准与海洋导航技术研究进展与展望[J].测绘学报, 2017,46(1):1-8.)
    [4]

    Yang Yuanxi, Qin Xianping. Resilient Observation Models for Seafloor Geodetic Positioning[J]. Journal of Geodesy, 2021, 95:79.

    [5] Lu Xiuping, Bian Shaofeng, Huang Motao, et al. An Improved Method for Calculating Average Sound Speed in Constant Gradient Sound Ray Tracing Technology[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):590-593. (陆秀平,边少锋,黄谟涛,等. 常梯度声线跟踪中平均声速的改进算法[J]. 武汉大学学报(信息科学版), 2012, 37(5):590-593.)
    [6] Zhao Jianhu, Zhang Hongmei, Wu Meng. A Sound Ray Tracking Algorithm Based on Template-Interpolation of Constant-Gradient Sound Velocity[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1):71-78. (赵建虎,张红梅,吴猛. 一种基于常梯度模板插值的声线跟踪算法[J]. 武汉大学学报(信息科学版), 2021, 46(1):71-78)
    [7] Zhang Jucheng, Zheng Cuie, Sun Dajun. A Self-adapting Division Method for RayTracing Positioning[J]. Journal of Harbin Engineering University, 2013, 34(12):1497-1501(张居成,郑翠娥,孙大军. 用于声线跟踪定位的自适应分层方法[J].哈尔滨工程大学学报, 2013, 34(12):1497-1501)
    [8] Zhang Zhiwei, Bao Jingyang, Jin Shan. A Self-adapting Division Method for RayTracing of Multi-beam Echo sounding[J]. Hydrograhic Surveying and Charting, 2018, 38(1):23-42(张志伟,暴景阳,金山. 一种多波束测深声线跟踪自适应分层方法[J].海洋测绘, 2018, 38(1):23-42)
    [9] Li Shengxue, Wang Zhenjie, Nie Zhixi, et al. A Self-adapting Division Ray-Tracing Method in the Long Baseline Acoustic Positioning[J]. Marine Science Bulletin, 2015, 34(5):491-498(李圣雪,王振杰,聂志喜, 等. 一种适用于深海长基线定位的自适应分层声线跟踪法[J]. 海洋通报, 2015, 34(5):491-498)
    [10] Sun Wenzhou, Yin Xiaodong, Zeng Anmin, et al. Differential Positioning Algorithm for Deep-sea Control Points on the Constraint of Depth Difference and Horizontal Distance Constraint[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1190-1196. (孙文舟,殷晓冬,曾安敏,等. 附加深度差和水平距离约束的深海控制点差分定位算法[J].测绘学报, 2019, 48(9):1190-1196.)
    [11]

    Yamada T, Ando M, Tadokoro K, et al. Error Evaluation in Acoustic Positioning of a Single Transponder for Seafloor Crustal Deformation Measurements[J]. Earth, planets and Space, 2002, 54(9):871-881.

    [12] Sun Wenzhou, Yin Xiaodong, Bao Jingyang, et al. Semi-parametric Adjustment Model Methods for Positioning of Seafloor Control Point[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):117-123. (孙文舟,殷晓冬,暴景阳,等. 海底控制点定位的半参数平差模型法[J].测绘学报, 2019, 48(1):117-123.)
    [13]

    Sun Wenzhou, Yin Xiaodong, Zeng Anmin. The Relationship Between Propagation Time and Sound Velocity Profile for Positioning Seafloor Reference Points[J]. Marine Geodesy, 2019, 42(2):186-200.

    [14]

    Urick R J. Principles of Underwater Sound for Engineers[M]. New York:McGrawHill, 1983.

    [15]

    Chadwell C D, Sweeney A D. Acoustic Ray-trace Equations for Seafloor Geodesy[J]. Marine Geodesy, 2010, 33(2-3):164-186.

    [16] Lǚ Huaqing. Fundamentals of marine physics[M]. Beijing:Navy Press,2012. (吕华庆. 物理海洋学基础[M]. 北京:海军出版社, 2012.)
    [17] Liu Bosheng, Lei Jiayu. Principles of Underwater Acoustics[M]. Harbin:Harbin Engineering University Press, 2010.(刘伯胜, 雷家煜. 水声学原理[M]. 哈尔滨:哈尔滨工程大学出版社, 2010.)
    [18] Sun Wenzhou. Study on Coordinate Determination and Key Parameters Determination of Seafloor Geodetic Control Network[D]. Dalian:Dalian Naval Academy, 2019. (孙文舟. 海底大地控制网坐标测定及关键参数确定方法的研究[D]. 大连:大连舰艇学院, 2019.)
    [19] Zhang Zhaoying. The Status and Development of CTD Measurement Technology[J]. Ocean Technology, 2003, 22(4):105-110. (张兆英. CTD测量技术的现状与发展[J].海洋技术, 2003, 22(4):105-110.)
    [20] Sun Wenzhou, Yin Xiaodong, Zeng Anmin, et al. Differential Positioning Algorithm for Deep-sea Control Points on Constraint of Depth Difference and Horizontal Distance Constraint[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1190-1196. (孙文舟,殷晓冬,曾安敏. 附加深度差和水平距离约束的深海控制点差分定位算法[J]测绘学报, 2019, 48(9):1190-1196.)
    [21] Sun Wenzhou, Yin Xiaodong, Zeng Anmin, et al. Calculating the Starting Incidence Angle by Iterative Method for Positioning Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10):1588-1593. (孙文舟, 殷晓冬,曾安敏,等. 海底控制点定位初始入射角迭代计算方法的比较研究[J]. 武汉大学学报(信息科学版), 2020, 45(10):1588-1593.)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  19
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-03
  • 网络出版日期:  2023-07-02

目录

    /

    返回文章
    返回