最大可航窗口序列约束贝塞尔曲线的无人船自主航行航线规划方法

周寅飞, 张立华, 贾帅东, 戴泽源, 董箭, 马梦锴

周寅飞, 张立华, 贾帅东, 戴泽源, 董箭, 马梦锴. 最大可航窗口序列约束贝塞尔曲线的无人船自主航行航线规划方法[J]. 武汉大学学报 ( 信息科学版), 2024, 49(7): 1224-1236. DOI: 10.13203/j.whugis20220058
引用本文: 周寅飞, 张立华, 贾帅东, 戴泽源, 董箭, 马梦锴. 最大可航窗口序列约束贝塞尔曲线的无人船自主航行航线规划方法[J]. 武汉大学学报 ( 信息科学版), 2024, 49(7): 1224-1236. DOI: 10.13203/j.whugis20220058
ZHOU Yinfei, ZHANG Lihua, JIA Shuaidong, DAI Zeyuan, DONG Jian, MA Mengkai. Autonomous Navigation Route Planning Method of Unmanned Ship Based on Bessel Curves Constrained by Maximum Navigable Window Sequence[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1224-1236. DOI: 10.13203/j.whugis20220058
Citation: ZHOU Yinfei, ZHANG Lihua, JIA Shuaidong, DAI Zeyuan, DONG Jian, MA Mengkai. Autonomous Navigation Route Planning Method of Unmanned Ship Based on Bessel Curves Constrained by Maximum Navigable Window Sequence[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1224-1236. DOI: 10.13203/j.whugis20220058

最大可航窗口序列约束贝塞尔曲线的无人船自主航行航线规划方法

基金项目: 

国家自然科学基金 41871369

国家自然科学基金 41901320

国家自然科学基金 42071439

详细信息
    作者简介:

    周寅飞,博士生,主要从事海洋GIS研究。Zhouyinfei1998@163.com

    通讯作者:

    贾帅东,博士,副教授。sky_jsd@163.com

Autonomous Navigation Route Planning Method of Unmanned Ship Based on Bessel Curves Constrained by Maximum Navigable Window Sequence

  • 摘要:

    提出了一种最大可航窗口序列约束贝塞尔曲线的无人船自主航行航线规划方法。首先,根据电子海图求取碍航区,进而预生成航路点,沿预生成航路依次提取与碍航区不相交的最大可航窗口序列,构建可航约束空间;然后,挖掘贝塞尔曲线在控制点约束包络区域内进行运动参数关联计算的潜能,将航线规划转换为空间与运动参数双约束下通过凸优化求解贝塞尔航路曲线控制点的问题。最后,分别通过仿真和实船实验,对所提方法与已有方法进行对比分析。实验结果表明:(1)所提方法能够顾及船舶运动约束来规划航线,进而有效提高无人船执行规划航线的精度;(2)所提方法可以引导无人船以特定任务所需航向、航速等运动参数自主航行通过指定位置,达到灵活机动的目的。

    Abstract:
    Objective 

    Route planning is the foundation of the safe and efficient navigation of ships. Due to insufficient consideration of the requirements for autonomous navigation unmanned ships, the current route planning method has two problems: (1) Own to the insufficient consideration for the motion constraints of ships in the planning route, the unmanned ship tends to produce the track deviation near the turning position and is likely to cross the navigation obstruction area while sailing autonomously. (2) The planned route is difficult to guide the unmanned ship to sail autonomously through the specified place flexibly with the course and speed for a specific task. Therefore, we propose a route planning method for autonomous navigation of the unmanned ship with a maximum navigable window sequence that constrains Bezier curves.

    Methods 

    First, the navigation obstruction areas are calculated on the basis of electronic navigation charts, the maximum navigable window sequence that does not intersect with the navigation obstruction area is extracted along the pre-generated route, and the navigable constraint space is constructed. Then, the potential of the Bezier curve for the calculation of related motion parameters in the constraint envelope area of control points is excavated, and the route planning is transformed into a problem for the control point of Bezier curves through convex optimization under the double constraints of space and motion parameters. Finally, the method is compared with the existing methods through simulation and real ship experiments.

    Results 

    The experimental results show that: (1) This method could effectively reduce the oscillation of track tracing of the unmanned ship at the turning position and significantly improve the tracking control accuracy of the unmanned ship. The maximum horizontal and vertical errors and variances of the track tracing of the route generated by the method are significantly less than those of the improved binary tree method of the route. (2) The actual speed and course are basically consistent with the set speed and direction, which shows that this method could guide the unmanned ship to sail autonomously through the specified place at the speed for a specific task.

    Conclusions 

    (1) The method could restrain the ship's motion to plan the route, so as to improve the accuracy of the unmanned ship effectively in executing the planned route. (2) The method could guide the unmanned ship to navigate autonomously through the specified place with the motion parameters such as heading and speed required by the specific task, so as to achieve the purpose of flexible mobility.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220058

  • 图  1   航线规划方法流程图

    Figure  1.   Flowchart of Route Planning Method

    图  2   碍航区求取结果图

    Figure  2.   Result Diagram of Obstruction Area

    图  3   航路二叉树生成及结构示意图

    Figure  3.   Route Binary Tree Generation and Structure Diagram

    图  4   最大可航窗口

    Figure  4.   Maximum Navigable Window

    图  5   矩形拓展的限制情况分析

    Figure  5.   Analysis of Limitation of Rectangle Expansion

    图  6   碍航区求交集示意图

    Figure  6.   Intersection Diagram of Obstruction Area

    图  7   碍航区约束边界的求解示意图

    Figure  7.   Solution Diagram of Constraint Boundary in Navigation Obstruction Area

    图  8   斜边上的最大矩形位置点求取

    Figure  8.   Find the Maximum Rectangular Position on the Hypotenuse

    图  9   最大可航窗口序列的生成示意图

    Figure  9.   Generation Diagram of the Maximum Navigable Window Sequence

    图  10   贝塞尔曲线生成示意图

    Figure  10.   Diagram of Bezier Curve Generation

    图  11   分段贝塞尔运动曲线的时间分配示意图

    Figure  11.   Time Distribution of Piecewise Bezier Motion Curve

    图  12   航线规划及航迹跟踪仿真结果

    Figure  12.   Simulation Results of Trajectory Planning and Tracking

    图  13   实验区域示意图

    Figure  13.   Schematic Diagram of the Experimental Area

    图  14   实船巡航结果

    Figure  14.   Results of Real Ship Cruise

    图  15   实船实验航速航向变化曲线

    Figure  15.   Experimental Ship Speed Course Change Curve

    表  1   船舶数学模型的符号定义

    Table  1   Symbol Definition of Ship Mathematical Model

    参考系符号定义单位
    惯性坐标系xX轴坐标m
    yY轴坐标m
    ψ艏摇角rad
    运动坐标系u艏向速度m/s
    v横向速度m/s
    r艏摇角速度rad/s
    au船艏方向加速度rad/s2
    av船舷方向加速度rad/s2
    下载: 导出CSV

    表  2   仿真实验参数设定

    Table  2   Simulated Experimental Parameter Setting

    航路阶段位置航向/(°)航速/(m∙s-1)
    起点122.225 756 63°E30.334 481 694°N00
    中间航路15
    终点122.237 134 50°E30.288 980 189°N1357.2
    下载: 导出CSV

    表  3   仿真实验结果精度

    Table  3   Accuracy of Simulated Experimental Results

    方法最大误差/m方差/m2
    横向纵向横向纵向
    改进航路二叉树6.608 93-6.948 034.737 53.712 4
    本文方法1.946 24-1.967 500.706 60.922 0
    下载: 导出CSV

    表  4   实船实验目标参数设定

    Table  4   True Experimental Parameters Settings

    序号位置点号经纬度航向/(°)航速/(m∙s-1)
    1起点P1121.675°E38.871°N90.01.000
    2P2121.677°E38.871°N45.01.432
    3P3121.678°E38.871°N180.01.500
    4终点P4121.678°E38.869°N180.00.500
    下载: 导出CSV

    表  5   实船实验结果

    Table  5   True Experimental Results

    位置点号实际航向/(°)目标航向/(°)航向差值/(°)实际航速/(m∙s-1)目标航速/(m∙s-1)航速差值/(m∙s-1)
    P240.745-4.31.331.432-0.102
    P3178.7180-1.31.411.500-0.090
    P4185.31805.30.420.500-0.080
    下载: 导出CSV
  • [1]

    Han P, Yang X. Big Data-Driven Automatic Generation of Ship Route Planning in Complex Maritime Environments[J]. Acta Oceanologica Sinica, 2020, 39(8):113-120.

    [2]

    Mannarini G, Carelli L. VISIR-I.b: Waves and Ocean Currents for Energy Efficient Navigation[J]. Geoscientific Model Development Discussions, 2019(1):1-47.

    [3] 潘伟, 董其林, 许小卫, 等. 考虑通航环境因素的智能船舶航线规划[J]. 上海海事大学学报, 2021, 42(3):76-84.

    Pan Wei, Dong Qilin, Xu Xiaowei, et al. Route Planning of Intelligent Ships Considering Navigation Environment Factors[J]. Journal of Shanghai Maritime University, 2021, 42(3):76-84.

    [4] 潘明阳, 刘乙赛, 李琦, 等. 基于改进A~*算法的内河水网航线规划及应用[J]. 上海海事大学学报, 2020, 41(1):40-45.

    Pan Mingyang, Liu Yisai, Li Qi, et al. Improved A* Algorithm Based Route Planning and Its Application for Inland Waterway Network[J]. Journal of Shanghai Maritime University, 2020, 41(1):40-45.

    [5] 陈晓, 戴冉, 陈昌源. 基于Maklink图和蚁群算法的航线规划[J]. 中国航海, 2017, 40(3):9-13.

    Chen Xiao, Dai Ran, Chen Changyuan. Navigation Route Planning with Maklink Graph and Ant Colony Algorithm[J]. Navigation of China, 2017, 40(3):9-13.

    [6] 张立华. 基于电子海图的航线自动生成理论与方法[M]. 北京:科学出版社, 2011.

    Zhang Lihua. Theory and Method of Automatic Route Generation Based on Electronic Navigation Chart[M]. Beijing: Science Press, 2011.

    [7] 张立华, 朱庆, 张安民, 等. 一种智能的最短航线构建方法[J]. 测绘学报, 2008,37(1):114-120.

    Zhang Lihua, Zhu Qing, Zhang Anmin, et al. An Intelligent Method for the Shortest Routing[J]. Acta Geodaetica et Cartographica Sinica, 2008,37(1):114-120.

    [8] 汪柱, 李树军, 张立华, 等. 基于航路二叉树的航线自动生成方法[J]. 武汉大学学报(信息科学版), 2010, 35(4):407-410.

    Wang Zhu, Li Shujun,Zhang Lihua,et al.A Method for Automatic Routing Based on Route Binary Tree[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4):407-410.

    [9] 曹鸿博, 张立华, 贾帅东, 等. 电子海图最短距离航线自动生成的改进方法[J]. 武汉大学学报(信息科学版), 2011, 36(9):1107-1110.

    Cao Hongbo, Zhang Lihua, Jia Shuaidong, et al. An Improved Method for Automatically Building Shortest Route Based on Electronic Chart[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9):1107-1110.

    [10] 张立华, 苏奋振, 彭认灿, 等. 基于瞬时水深模型的最短时间航线自动生成算法[J]. 测绘学报, 2010, 39(5):516-521.

    Zhang Lihua, Su Fenzhen, Peng Rencan, et al. A Method for the Shortest Time Routing Based on an Instantaneous Depth Model[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):516-521.

    [11] 张立华, 戴泽源, 贾帅东. 融合多幅海图的航线自动生成改进方法[J]. 哈尔滨工程大学学报, 2019, 40(6):1090-1097.

    Zhang Lihua, Dai Zeyuan,Jia Shuaidong. Improved Method for Route Generation Based on Chart Fusion[J]. Journal of Harbin Engineering University, 2019, 40(6):1090-1097.

    [12] 吕锦涛, 刘志强, 王娜. 基于航路堆栈的航线自动生成方法[J]. 计算机应用, 2018,38(S1):16-19.

    Jintao Lü, Liu Zhiqiang, Wang Na. Method for Automatic Ship Routing Based on Route Stack[J]. Journal of Computer Applications, 2018,38(S1):16-19.

    [13]

    Liu Y,Wang H,Xie J.Global Path Planning Method Based on Geometry Algorithm in a Strait Environment[C]//IEEE 2010 International Conference on Electrical and Control Engineering, Wuhan, China, 2010.

    [14] 李改肖, 吕程, 彭认灿, 等. 一种利用双侧凸包扩张模型的路径快速规划算法[J]. 武汉大学学报(信息科学版), 2021, 46(1):58-64.

    Li Gaixiao, Cheng Lü, Peng Rencan,et al. A Rapid Path Planning Algorithm Based on the Bilateral Convex⁃Hull Expanding Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1):58-64.

    [15] 王涛, 张立华, 彭认灿, 等. 考虑转向限制的电子海图最短距离航线自动生成方法[J]. 哈尔滨工程大学学报, 2016, 37(7):923-929.

    Wang Tao, Zhang Lihua, Peng Rencan, et al. Automatic Generation of the Shortest Route of an Electronic Navigational Chart Considering Turning Restrictions[J]. Journal of Harbin Engineering University, 2016, 37(7):923-929.

    [16] 张树凯, 刘正江, 张显库, 等. 无人船艇的发展及展望[J]. 世界海运, 2015, 38(9):29-36.

    Zhang Shukai, Liu Zhengjiang, Zhang Xianku, et al. Development and Prospect of Unmanned Ships[J]. World Shipping, 2015, 38(9):29-36.

    [17] 戴泽源. 海洋时空大数据驱动的舰船航线自动规划理论与方法[D]. 大连:大连舰艇学院, 2020.

    Dai Zeyuan. Theory and Method of Ship Route Automatic Planning Driven by Ocean Spatio-Temporal Big Data[D]. Dalian: Dalian Naval Academy, 2020.

    [18] 盛振邦, 刘应中. 船舶原理[M]. 上海:上海交通大学出版社, 2004.

    Sheng Zhenbang, Liu Yingzhong. Principles of Naval Architecture[M]. Shanghai: Shanghai Jiaotong University Press, 2004.

    [19]

    Mccue L.Handbook of Marine Craft Hydrodynamics and Motion Control[J]. IEEE Control Systems, 2016, 36(1):78-79.

    [20]

    Farin G E.Curves and Surfaces for Computer-Aided Geometric Design[M]. San Diego: Academic Press, 1988.

    [21]

    Zhang X, Wang C, Chui K, et al. A Real-Time Collision Avoidance Framework of MASS Based on B-Spline and Optimal Decoupling Control[J]. Sensors, 2021, 21(14):4911.

    [22]

    Liu S, Watterson M, Mohta K, et al. Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments[J]. IEEE Robotics & Automation Letters, 2017, 2(3):1688-1695.

    [23]

    Gao F,Shen S.Online Quadrotor Trajectory Generation and Autonomous Navigation on Point Clouds[C]//IEEE International Symposium on Safety, Lausanne, Switzerland, 2016.

    [24]

    Richter C A, Bry A P, Roy N. Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments[J]. Robotics Research, 2016(1): 649-666.

    [25]

    Bosetti P,Lio M D, Saroldi A. On the Human Control of Vehicles: An Experimental Study of Acceleration[J]. European Transport Research Review, 2014, 6(2) :157-170.

    [26]

    Shadmehr R, Wise S P. The Computational Neurobiology of Reaching and Pointing[M]. Cambridge: The MIT Press, 2005.

    [27]

    Boyd S,Vandenberghe L.Convex Optimization[M].Cambridge:Cambridge University Press, 2004.

  • 期刊类型引用(46)

    1. 刘春雷,张媛静,陆晨明,李亚松,李剑锋. 基于时序InSAR的九龙江河口地区地面沉降时空演变规律及成因分析. 应用海洋学学报. 2024(01): 116-125 . 百度学术
    2. 陈瑞瑞,孙颢月,朱紫若,蒋雪中,陈沈良,陈静. 黄河三角洲地面沉降研究进展与未来展望. 海岸工程. 2024(01): 1-23 . 百度学术
    3. 赵凤阳,周吕,魏玉业. 融合改进鲸鱼算法解缠的梧州市地面沉降InSAR监测. 遥感信息. 2024(01): 52-58 . 百度学术
    4. 侯永浩,张兴,李晓民,李宗仁. SBAS-InSAR技术在地质灾害调查中的应用. 北京测绘. 2024(10): 1477-1481 . 百度学术
    5. 柳新强,姜刚,刘军峰,贺国伟. PS-InSAR和SBAS-InSAR的地表沉降监测对比研究——以雄安新区为例. 工程勘察. 2023(01): 62-67 . 百度学术
    6. 曾敏,皮鹏程,赵信文,陈松,彭红霞,侯清芹,孙慧敏,薛紫萱. 基于PS-InSAR的珠江口典型填海造地区地面沉降时空特征研究. 华南地质. 2023(01): 116-126 . 百度学术
    7. 李文慧,王志伟,赵月,王翔. 基于SNAP-StaMPS方法的高速公路沿线地面沉降监测. 测绘工程. 2023(03): 36-43 . 百度学术
    8. 周定义,左小清,赵志芳,喜文飞,葛楚. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测. 地质通报. 2023(10): 1774-1783 . 百度学术
    9. 刘泽洲,卢才武,章赛,李萌,和郑翔. 基于多阈值目标提取的时序InSAR矿区地表沉降监测研究. 中国矿业. 2022(08): 79-85 . 百度学术
    10. 王新田,刘增珉,陈建忠,梁菲,孟萌,李天鹤. 山东省地表形变InSAR监测与分析. 测绘通报. 2022(S2): 130-134 . 百度学术
    11. 邓晓景,曲国庆,张建霞,席换,王晖. 融合升降轨PS-InSAR东营市地面沉降监测. 山东理工大学学报(自然科学版). 2021(01): 10-16 . 百度学术
    12. 杨利,薛东剑,王海方,付林,张婷. 五龙沟矿区时序InSAR地表形变监测. 中国矿业. 2021(03): 107-112 . 百度学术
    13. 程琳琳,杨玉曼,李月颖,孙梦尧,王振威,焦路尧. 矿业型村镇转型期发展问题分析与策略研究:以北京市门头沟区为例. 中国矿业. 2021(03): 101-106 . 百度学术
    14. 王辉,曾琪明,焦健,陈继伟. 结合序贯平差方法监测地表形变的InSAR时序分析技术. 北京大学学报(自然科学版). 2021(02): 241-249 . 百度学术
    15. 付云霞,管勇,王晓丹,王建收,尹政,周晓雪,王青,徐美君. 大型河口三角洲地面沉降机制研究——以黄河三角洲为例. 海岸工程. 2021(02): 83-95 . 百度学术
    16. 关金环,高明亮,宫辉力. 首都国际机场区域差异性沉降原因探讨. 测绘科学. 2021(09): 67-75 . 百度学术
    17. 柴华彬,胡吉彪,耿思佳. 融合实测数据的地表沉降SBAS-InSAR监测方法. 煤炭学报. 2021(S1): 17-24 . 百度学术
    18. 程霞,张永红,邓敏,吴宏安,康永辉. Sentinel-1A卫星的黄河三角洲近期地表形变分析. 测绘科学. 2020(02): 43-51 . 百度学术
    19. 卢旺达,韩春明,岳昔娟,赵迎辉,周格仪. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析. 遥感技术与应用. 2020(02): 416-423 . 百度学术
    20. 向淇文,潘建平,张广泽,徐正宣,张定凯,涂文丽. 基于SBAS技术的川藏铁路折多山地区地表形变监测与分析. 测绘工程. 2020(04): 48-54+59 . 百度学术
    21. 张金盈,崔靓,刘增珉,王新田,林琳,徐凤玲. 利用Sentinel-1 SAR数据及SBAS技术的大区域地表形变监测. 测绘通报. 2020(07): 125-129 . 百度学术
    22. 狄桂栓. 基于InSAR技术的黄河三角洲区域地表形变浅析. 地理空间信息. 2020(09): 106-109+8 . 百度学术
    23. 高辉,罗孝文,吴自银,阳凡林. 基于时序InSAR的珠江口大面积地面沉降监测. 海洋学研究. 2020(02): 81-87 . 百度学术
    24. 韩红花. 黄河三角洲区域地表形变监测研究. 山东国土资源. 2020(11): 69-72 . 百度学术
    25. 夏元平,陈志轩,张毅. 南昌市地面沉降InSAR监测及影响因子分析. 测绘科学. 2020(11): 115-122+129 . 百度学术
    26. 贺跃光,肖亮. 某水溶开采矿区短基线集InSAR高相干点探测. 中国锰业. 2019(01): 89-93 . 百度学术
    27. 张静,丁黄平,刘纯,谢文然,时雨. 基于InSAR技术的盘锦地区地面沉降研究. 世界地质. 2019(02): 574-580 . 百度学术
    28. 韩红超,符华年,张文峰,温浩. InSAR、水准多维沉降监测体系建设及应用研究. 测绘通报. 2019(S1): 236-241 . 百度学术
    29. 师芸,李伟轩,唐亚明,席磊,孟欣. 时序InSAR技术在地球环境监测及其资源管理中的应用:以交城-清徐地区为例. 武汉大学学报(信息科学版). 2019(11): 1613-1621 . 百度学术
    30. 杨帆,王道顺,张磊,张子文. 基于时序InSAR的隧道工程形变监测与分析. 测绘与空间地理信息. 2019(10): 1-4 . 百度学术
    31. 黄洁慧,谢谟文,王立伟. 基于SBAS-InSAR技术的白格滑坡形变监测研究. 人民长江. 2019(12): 101-105 . 百度学术
    32. 黄洁慧,谢谟文,王立伟. 基于差分干涉合成孔径雷达技术的米林滑坡形变监测. 科学技术与工程. 2019(25): 7-12 . 百度学术
    33. 李锁乐,吴宏安,张永红,康永辉,左振华. 包头市地面沉降高分辨率时序InSAR监测. 测绘科学. 2018(09): 76-80 . 百度学术
    34. 杨帆,张磊,张子文,赵增鹏. 利用短基线集InSAR技术监测抚顺市地面沉降. 测绘通报. 2018(03): 84-88 . 百度学术
    35. 张静,冯东向,綦巍,周雪,赵玉星. 基于SBAS-InSAR技术的盘锦地区地面沉降监测. 工程地质学报. 2018(04): 999-1007 . 百度学术
    36. 贺晓阳,赵盟,程存付. 小基线集技术在矿区地表形变监测中的应用. 河南科技. 2018(13): 97-98 . 百度学术
    37. LIU Xiao,LIU Jie,FENG Xiuli. Inversion and Prediction of Consolidation Settlement Characteristics of the Fluvial Sediments Based on Void Ratio Variation in the Northern Modern Yellow River Subaqueous Delta, China. Journal of Ocean University of China. 2018(03): 545-554 . 必应学术
    38. 李达,邓喀中,高晓雄,牛海鹏. 基于SBAS-InSAR的矿区地表沉降监测与分析. 武汉大学学报(信息科学版). 2018(10): 1531-1537 . 百度学术
    39. 张炜,张伟胜,张东升,胡文敏,孙毓言,唐佳佳. 采动覆岩活动规律的“空-地”监测技术. 中国矿业大学学报. 2018(06): 1212-1223 . 百度学术
    40. 王小侣. 水电站大坝400V备自投改造研究. 河南科技. 2018(19): 90-91 . 百度学术
    41. 张磊,杨帆,李超飞,赵增鹏,张子文. 宁波地面沉降的短基线集监测与分析. 测绘科学. 2017(12): 77-82 . 百度学术
    42. 陈继伟,曾琪明,焦健,赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例. 国土资源遥感. 2017(04): 82-87 . 百度学术
    43. 王萍. 沉降观测技术在高层建筑施工中的应用. 建材与装饰. 2017(35): 19-20 . 百度学术
    44. 史秀保,徐宁,温浩,李春进. 一种小基线地表形变监测精度评价方法. 测绘通报. 2016(08): 70-73+91 . 百度学术
    45. 于丹,杨子玉,庄岩,于均园. 时序分析法在沈阳地铁二号线变形预测的应用. 沈阳建筑大学学报(自然科学版). 2016(03): 453-458 . 百度学术
    46. 王霖郁,李辉. 一种枝切法和质量图相结合的InSAR相位解缠算法. 应用科技. 2016(05): 49-53 . 百度学术

    其他类型引用(25)

图(15)  /  表(5)
计量
  • 文章访问数:  582
  • HTML全文浏览量:  62
  • PDF下载量:  70
  • 被引次数: 71
出版历程
  • 收稿日期:  2022-08-29
  • 网络出版日期:  2023-01-15
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回