一种顾及制图区域要素密度均衡的地图变换算法

亢孟军, 叶蕾, 朱军, 王孟琪, 杜清运, 王明军

亢孟军, 叶蕾, 朱军, 王孟琪, 杜清运, 王明军. 一种顾及制图区域要素密度均衡的地图变换算法[J]. 武汉大学学报 ( 信息科学版), 2022, 47(12): 2096-2104. DOI: 10.13203/j.whugis20220022
引用本文: 亢孟军, 叶蕾, 朱军, 王孟琪, 杜清运, 王明军. 一种顾及制图区域要素密度均衡的地图变换算法[J]. 武汉大学学报 ( 信息科学版), 2022, 47(12): 2096-2104. DOI: 10.13203/j.whugis20220022
KANG Mengjun, YE Lei, ZHU Jun, WANG Mengqi, DU Qingyun, WANG Mingjun. An Improved Map Transformation Algorithm Considering the Balance of Features Density in Cartographical Region[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2096-2104. DOI: 10.13203/j.whugis20220022
Citation: KANG Mengjun, YE Lei, ZHU Jun, WANG Mengqi, DU Qingyun, WANG Mingjun. An Improved Map Transformation Algorithm Considering the Balance of Features Density in Cartographical Region[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2096-2104. DOI: 10.13203/j.whugis20220022

一种顾及制图区域要素密度均衡的地图变换算法

基金项目: 

城市空间信息工程北京市重点实验室经费 20210211

详细信息
    作者简介:

    亢孟军,博士,副教授,研究方向为空间信息可视化、空间决策建模。mengjunk@whu.edu.cn

    通讯作者:

    王明军, 博士,讲师。dawnson.wang@263.net

  • 中图分类号: P208;P28

An Improved Map Transformation Algorithm Considering the Balance of Features Density in Cartographical Region

Funds: 

Fund of Beijing Key Laboratory of Urban Spatial Information Engineering 20210211

More Information
    Author Bio:

    KANG Mengjun, PhD, associate professor, majors in spatial information visualizing, spatial-decision modeling.E-mail: mengjunk@whu.edu.cn

    Corresponding author:

    WANG Mingjun, PhD, lecturer. E-mail: dawnson.wang@263.net

  • 摘要: 制图区域要素密度分布不均衡会增加地图表达难度,常规地图表达方式无法解决视觉不平衡的问题。在Gastner-Newman地图变形算法的基础上,提出了一种顾及制图区域要素密度平衡和公众地图认知一致性的地图变换算法。首先,设计多种变形单元尺度以及配置制图要素密度权重组合;然后,代入线性扩散方程,构建变形格网并映射各离散控制点;最后,生成多种变形地图结果。开展了地图认知实验,获得56份问卷结果,针对中国广西南宁市青秀区行政区划图的形态控制,应控制S周长 > 0.975、S周长面积比 > 0.961、S形状比 > 0.966,能兼顾地图形变以及公众认知的一致性。为解决地图要素密度不均衡的问题提供了新的思路,变形后的地图达到视觉平衡,同时,通过调整形变权重参数实现了公众地图认知的一致性。
    Abstract:
      Objectives  In the case of uneven distribution of map features, the density difference breaks the visual balance and reduces the beauty of the map. A large number of spatial features are concentrated in the small area, resulting in the contradiction between the display of features and the size of the area. Map details are not prominent, which increases difficulties in obtaining spatial information and is not conducive to decision analysis. The uneven distribution of feature density in mapping area increases the difficulty of map expression. Conventional map expression cannot solve the problem of visual imbalance.
      Methods  Based on Gastner-Newman cartogram algorithm, this paper proposes a map transformation algorithm that balances the feature density and achieve consistent public perception. Various cartograms can be generated through five steps: Designing deformation unit scales, configuring density weight combination of features, applying linear diffusion equation, constructing deformation grids and mapping discrete control points.
      Results  Taking Qingxiu district of Nanning city, China as the research area, we select two scale deformation units of sub-district and custom grid, and configure density weights with different combinations of point of interest and road network geometry features to generate various cartograms. The deformation measurement values of the deformation map are calculated respectively. After cognitive experiments, 56 questionnaires were obtained. Regarding the morphological control of the administrative map of Qingxiu District in Nanning, the parameters configurations should be controlled as in Sperimeter > 0.975, Sperimeter area ratio > 0.961 and Sshape ratio > 0.966. In this way, public cognition can be consistent.
      Conclusions  This study provides a new idea to solve the problem of uneven density of map features. The deformed map reaches visual balance.The area where the original features are dense increases while the area where the features are sparse decreases. By adjusting the deformation weight parameters to maintain the consistency of public map cognition. Subsequently, we will further study how to determine the optimal parameter combination to achieve the optimal deformation expression and cognitive effect.
  • 图  1   地图变形过程概述

    Figure  1.   Overview of Map Deformation Process

    图  2   基于G⁃N算法的地图变换流程

    Figure  2.   Map Transformation Process Based on G-N Algorithm

    图  3   格网密度权重赋值结果

    Figure  3.   Grid Density Weight Assignment Results

    图  4   变形格网效果

    Figure  4.   Deformation Grid Effect

    图  5   空间要素坐标变换原理

    Figure  5.   Principle of Coordinate Transformation of Spatial Features

    图  6   研究区域数据分布情况

    Figure  6.   Distribution of Research Regional Data

    图  7   变形地图样例

    Figure  7.   Samples of Cartogram

    图  8   待测试变形地图不一致率与其形变度量指标关系

    Figure  8.   Relationship Between Inconsistency Rate of Cartogram to be Tested and Its Deformation Measurement Index

    表  1   研究区域数据统计

    Table  1   Statistics of Research Regional Features

    行政区划名称 面积/km² POI个数 POI密度/(个·km-2) 路网数量/km 路网密度
    /(km·km-2)
    新竹街道 5.1 2 540 498 61.1 12
    建政街道 9.6 1 032 107.5 74.2 7.7
    中山街道 12.7 1 326 104.4 105.6 8.3
    南湖街道 32.9 1 212 36.8 174 5.3
    津头街道 37.7 1 606 42.7 197.8 5.2
    南阳镇 94.9 21 0.2 19.7 0.2
    刘圩镇 159.7 24 0.2 33 0.2
    伶俐镇 236.3 43 0.2 59.7 0.3
    长塘镇 276.6 792 2.7 258.6 0.9
    合计 856.5 8 596 983.7
    下载: 导出CSV

    表  2   认知实验结果

    Table  2   Cognitive Experiment Results

    变形地图编号 形变度量指标 不一致票数 不一致率
    重叠面积比 S周长 S周长面积比 S形状比
    S1-9-1 0.746 0.926 0.892 0.908 40 0.714
    S1-7-3 0.746 0.926 0.891 0.909 40 0.714
    S1-3-7 0.746 0.925 0.891 0.908 40 0.714
    S1-5-5 0.747 0.927 0.893 0.910 38 0.679
    S1-POI 0.776 0.948 0.914 0.931 36 0.643
    S2-POI 0.775 0.972 0.953 0.963 31 0.554
    S1-1-9 0.814 0.971 0.954 0.960 30 0.536
    S2-8-2 0.794 0.974 0.957 0.967 29 0.518
    S2-5-5 0.803 0.983 0.966 0.975 28 0.500
    S2-7-3 0.787 0.975 0.961 0.966 28 0.500
    S2-3-7 0.802 0.983 0.968 0.975 27 0.482
    S2-9-1 0.770 0.969 0.949 0.961 27 0.482
    S2-4-6 0.797 0.983 0.967 0.975 26 0.464
    S2-6-4 0.797 0.981 0.965 0.973 25 0.446
    S1-2-8 0.814 0.971 0.949 0.960 25 0.446
    S2-1-9 0.811 0.991 0.975 0.983 24 0.429
    S2-2-8 0.810 0.990 0.974 0.982 22 0.393
    S2-路网 0.948 1.000 1.000 1.000 18 0.321
    S1-4-6 0.952 0.999 0.998 0.999 16 0.286
    S1-6-4 0.954 0.998 0.997 0.997 15 0.268
    S1-路网 0.885 0.982 0.966 0.974 10 0.179
    S1-8-2 0.951 0.996 0.992 0.994 10 0.179
    注: S周长表示变形前后周长的相似度;S周长面积比表示变形前后周长面积比的相似度;S形状比表示变形前后形状比的相似度;S1-路网、S2-路网表示只考虑路网权重;S1-POI、S2-POI表示只考虑POI权重
    下载: 导出CSV
  • [1] 冯涛, 岳志兰, 梁发宏, 等. 专题地图设计辅助案例库建设的若干问题[J]. 测绘科学, 2016, 41(11): 156-159 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201611030.htm

    Feng Tao, Yue Zhilan, Liang Fahong, et al. Several Issues on the Case Base Construction Aided for the Thematic Maps Design[J]. Science of Surveying and Mapping, 2016, 41(11): 156-159 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201611030.htm

    [2] 李士锋. 对象平衡理论的地图制图表达[D]. 北京: 中国地质大学(北京), 2018

    Li Shifeng. Cartographic Representation of Object Balance Theory[D]. Beijing: China University of Geosciences, 2018

    [3] 高晓蓉, 闫浩文, 禄小敏, 等. 利用"计算区"进行建筑物短边结构识别和渐进式化简[J]. 武汉大学学报·信息科学版, 2021, 46(11): 1782-1790 doi: 10.13203/j.whugis20200698

    Gao Xiaorong, Yan Haowen, Lu Xiaomin, et al. Recognition and Progressive Simplification of Short-Edge Structure of Buildings Using Calculation Regions[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1782-1790 doi: 10.13203/j.whugis20200698

    [4] 毋河海. 凸壳原理在点群目标综合中的应用[J]. 测绘工程, 1997, 6(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC199701000.htm

    Wu Hehai. Principle of Convex Hull and Its Applications in Generalization of Grouped Point Objects[J]. Engineering of Surveying and Mapping, 1997, 6(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC199701000.htm

    [5] 艾廷华, 刘耀林. 保持空间分布特征的群点化简方法[J]. 测绘学报, 2002, 31(2): 175-181 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200202017.htm

    Ai Tinghua, Liu Yaolin. A Method of Point Cluster Simplification with Spatial Distribution Properties Preserved[J]. Acta Geodaetica et Cartographic Sinica, 2002, 31(2): 175-181 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200202017.htm

    [6] 邓红艳, 武芳, 钱海忠, 等. 基于遗传算法的点群目标选取模型[J]. 中国图象图形学报, 2003, 8(8): 970-976 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200308021.htm

    Deng Hongyan, Wu Fang, Qian Haizhong, et al. A Model of Point Cluster Selection Based on Genetic Algorithms[J]. Journal of Image and Graphics, 2003, 8(8): 970-976 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200308021.htm

    [7] 郭庆胜. 空间推理与渐进式地图综合[M]. 武汉: 武汉大学出版社, 2007

    Guo Qingsheng. Spatial Reasoning and Progressive Map Synthesis[M]. Wuhan: Wuhan University Press, 2007

    [8] 刘万增, 陆辰妮, 霍亮, 等. 最优信息熵约束的居民地点状要素选取方法[J]. 武汉大学学报·信息科学版, 2021, 46(8): 1178-1185 doi: 10.13203/j.whugis20190305

    Liu Wanzeng, Lu Chenni, Huo Liang, et al. Selection Method of Residential Point Features Constrained by Optimal Information Entropy[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1178-1185 doi: 10.13203/j.whugis20190305

    [9] 陈波, 武芳, 钱海忠. 道路网自动选取方法研究[J]. 中国图象图形学报, 2008, 13(12): 2388-2393 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200812023.htm

    Chen Bo, Wu Fang, Qian Haizhong. Study on Road Networks? Auto-Selection Algorithms[J]. Journal of Image and Graphics, 2008, 13(12): 2388-2393 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200812023.htm

    [10] 邓红艳, 武芳, 翟仁健, 等. 基于遗传算法的道路网综合模型[J]. 武汉大学学报·信息科学版, 2006, 31(2): 164-167 http://ch.whu.edu.cn/article/id/2394

    Deng Hongyan, Wu Fang, Zhai Renjian, et al. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167 http://ch.whu.edu.cn/article/id/2394

    [11] 陈军, 胡云岗, 赵仁亮, 等. 道路数据缩编更新的自动综合方法研究[J]. 武汉大学学报·信息科学版, 2007, 32(11): 1022-1027 http://ch.whu.edu.cn/article/id/2038

    Chen Jun, Hu Yungang, Zhao Renliang, et al. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027 http://ch.whu.edu.cn/article/id/2038

    [12]

    Karnick P, Cline D, Jeschke S, et al. Route Visualization Using Detail Lenses[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(2): 235-247

    [13] 王俪颖, 遆鹏, 喻崇湖, 等. 顾及形变控制的小屏幕变比例尺交通路线图生成方法[J]. 地球信息科学学报, 2017, 19(9): 1245-1252 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201709017.htm

    Wang Liying, Ti Peng, Yu Chonghu, et al. Generation of Variable-Scale Route Maps with Consideration of Distortion Reduction for Small Display Sizes[J]. Journal of Geo⁃Information Science, 2017, 19(9): 1245-1252 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201709017.htm

    [14] 陈谊, 赵云芳, 杜晓敏. 变形统计地图构建方法综述[J]. 系统仿真学报, 2016, 28(9): 1970-1978

    Chen Yi, Zhao Yunfang, Du Xiaomin. Overview of Cartogram Algorithm[J]. Journal of System Simulation, 2016, 28(9): 1970-1978

    [15]

    Hennig B D. Rediscovering the World: Gridded Cartograms of Human and Physical Space[D]. Sheffield: University of Sheffield, 2011

    [16]

    Panse C, North S C, Keim D A. Medial-Axis-Based Cartograms[J]. IEEE Computer Graphicsand Applications, 2005, 25(3): 60-68

    [17] 王丽娜. Cartogram自动构建方法与应用研究[D]. 郑州: 信息工程大学, 2018

    Wang Lina. Research on Automatic Construction Method and Application of Cartogram[D]. Zhengzhou: Information Engineering University, 2018

    [18] 冯跃, 鲁春霞, 马蓓蓓. 京津冀地区粮食供需的空间格局变化特征[J]. 资源科学, 2009, 31(4): 566-573 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200904010.htm

    Feng Yue, Lu Chunxia, Ma Beibei. Spatial Pattern Changes of Grain Supply and Demand in Beijing-Tianjin-Hebei Region[J]. Resources Science, 2009, 31(4): 566-573 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200904010.htm

    [19]

    Houle B, Holt J, Gillespie C, et al. Use of Density-Equalizing Cartograms to Visualize Trends and Disparities in State-Specific Prevalence of Obesity: 1996-2006[J]. American Journal of Public Health, 2009, 99(2): 308-312

    [20] 张珣, 钟耳顺, 张小虎, 等. 一种尺度效应指数修正的格网数据示意地图制图算法[J]. 武汉大学学报·信息科学版, 2015, 40(8): 1100-1104 doi: 10.13203/j.whugis20130370

    Zhang Xun, Zhong Ershun, Zhang Xiaohu, et al. A Modified Algorithm to Construct Gridded Area Cartograms by Scale Effect Index[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1100-1104 doi: 10.13203/j.whugis20130370

    [21]

    Lawal O, Arokoyu S B. Visualizing Spatial Distribution of Vulnerable Groups and Their Exposure to PM2.5 Using Cartograms[J]. International Journal of Extensive Research, 2014, 3: 1-9

    [22] 赵光龙. 中国高等教育资源配置空间分布研究[D]. 上海: 华东师范大学, 2014

    Zhao Guanglong. The Research of China's Higher Education Resource Allocation in Spatial Distribution[D]. Shanghai: East China Normal University, 2014

    [23]

    Reyes J J. The Use of Cartograms in School Cartography[M]//Cham: Springer, 2014

    [24] 吴康, 龙瀛, 杨宇. 京津冀与长江三角洲的局部收缩: 格局、类型与影响因素识别[J]. 现代城市研究, 2015, 30(9): 26-35 https://www.cnki.com.cn/Article/CJFDTOTAL-XDCS201509005.htm

    Wu Kang, Long Ying, Yang Yu. Urban Shrinkage in the Beijing-Tianjin-Hebei Region and Yangtze River Delta: Pattern, Trajectory and Factors[J]. Modern Urban Research, 2015, 30(9): 26-35 https://www.cnki.com.cn/Article/CJFDTOTAL-XDCS201509005.htm

    [25]

    Gastner M T, Newman M E J. Diffusion-Based Method for Producing Density Equalizing Maps[J]. arXiv, 2004, DOI: 0401102

    [26]

    Lang S, Blaschke T. Landschaftsanalyse Mit GIS[M]//Stuttgart : Ulmer Verlag, 2007

    [27]

    Peter B. Measures for the Generalization of Polygonal Maps with Categorical Data[C]. The 4th ICA Workshop on Progress in Automated Map Generalization, Beijing, China, 2001

    [28]

    Imre A R. Compactness Versus Interior-to-Edge Ratio; Two Approaches for Habitat's Ranking[J]. Acta Biotheoretica, 2006, 54(1): 21-26

图(8)  /  表(2)
计量
  • 文章访问数:  525
  • HTML全文浏览量:  115
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 网络出版日期:  2023-01-06
  • 发布日期:  2022-12-04

目录

    /

    返回文章
    返回