一种面向对象分类的企鹅种群无人机影像识别方法

彭楚粤, 程晓, 夏林元

彭楚粤, 程晓, 夏林元. 一种面向对象分类的企鹅种群无人机影像识别方法[J]. 武汉大学学报 ( 信息科学版), 2023, 48(4): 550-558. DOI: 10.13203/j.whugis20200557
引用本文: 彭楚粤, 程晓, 夏林元. 一种面向对象分类的企鹅种群无人机影像识别方法[J]. 武汉大学学报 ( 信息科学版), 2023, 48(4): 550-558. DOI: 10.13203/j.whugis20200557
PENG Chuyue, CHENG Xiao, XIA Linyuan. A Recognizing Method of Penguin Population Using UAV Images Based on Object Otiented Classification[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 550-558. DOI: 10.13203/j.whugis20200557
Citation: PENG Chuyue, CHENG Xiao, XIA Linyuan. A Recognizing Method of Penguin Population Using UAV Images Based on Object Otiented Classification[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 550-558. DOI: 10.13203/j.whugis20200557

一种面向对象分类的企鹅种群无人机影像识别方法

基金项目: 

国家自然科学基金 41925027

详细信息
    作者简介:

    彭楚粤, 硕士, 主要从事极地遥感方面的研究。pengchy5@mail2.sysu.edu.cn

    通讯作者:

    程晓, 博士, 教授。chengxiao9@mail.sysu.edu.cn

  • 中图分类号: P228

A Recognizing Method of Penguin Population Using UAV Images Based on Object Otiented Classification

  • 摘要: 企鹅是南极的代表性生物, 监测企鹅的数量及分布对研究南极环境变化有重大意义。以往研究大多基于中高分辨率影像进行企鹅识别, 识别精度难以进一步提高, 且已有的企鹅种群的时间序列分析都是基于间接识别方法, 因此亟需发展基于高分辨率遥感影像的企鹅数量精确识别研究。首先, 选取东南极企鹅岛作为研究对象, 中国南极科学考察队利用遥感无人机分别于2017-01、2018-01和2019-12对该区域进行航拍观测, 获得了厘米级的高分辨率影像。然后, 基于面向对象分类法, 分别提取了3幅影像的企鹅阴影像元, 计算得到企鹅数量, 并标记了企鹅栖息地, 总体精度达到91%。实验结果表明, 企鹅种群动态变化, 栖息地分布较固定, 但数量出现波动, 3幅影像中分别为1 068对、1 003对和1 081对。
    Abstract:
      Objectives  Penguins are representative organisms in Antarctica. Monitoring the population and distribution of penguins is significant to study on environmental changes in Antarctica. In the past studies, due to the limitation of medium-high resolution images, the accuracy of penguin recognition is difficult to be further improved, and the existing time series analysis of penguin distribution and population is based on indirect identification method.
      Methods  The penguin island in East Antarctica was selected as the study area where the chinese antarctic scientific research team used remote sensing unmanned aerial vehicle to make aerial observations in 2017-01, 2018-01 and 2019-12, and obtained centimeter-level resolution images. Based on object-oriented classification, the shadow pixels of penguins in 3 images were extracted, the penguin habitats were marked, and the penguin population was calculated.
      Results and Conclusions  The overall accuracy is 91%, and the results show the dynamic changes of penguin population of which the distribution of penguin habitat was relatively fixed, but the number of penguins fluctuated with 1 068 pairs, 1 003 pairs and 1 081 pairs in 3 images respectively.
  • 图  1   研究区位置(红色点)

    Figure  1.   Locations of the Study Area (Red Point)

    图  2   南极企鹅岛无人机航拍影像

    Figure  2.   UAV Aerial Image of Penguin Island in Antarctica

    图  3   数据处理流程图

    Figure  3.   Flowchart of Data Processing

    图  4   融合Canny检测算法前后的多尺度分割结果对比

    Figure  4.   Comparison of Multi-scale Segmentation Results Before and After Fusion of Canny Detection Algorithm

    图  5   MAPPPD网站贝叶斯模型模拟的研究区企鹅种群数量年际变化图(蓝色区域为95%置信区间)

    Figure  5.   MAPPPD's Bayesian Model Simulates a Yearly Variation of Penguin Populations in the Study Area (95% Confidence Intervals Shown in Blue Area)

    图  6   企鹅阴影像元提取结果

    Figure  6.   Extraction Results of Penguin Shadow Pixels

    图  7   局部企鹅阴影像元提取结果

    Figure  7.   Results of Local Penguin Shadow Pixel Extraction

    表  1   精度评定结果

    Table  1   Result of Accuracy Evaluation

    年份 样区 分类提取结果 目视解译结果 $ {N}_{\mathrm{T}\mathrm{P}} $ $ {N}_{\mathrm{F}\mathrm{P}} $ $ {N}_{\mathrm{F}\mathrm{N}} $ 准确率/% 召回率/% $ {F}_{\beta } $/%
    2017年 1 21 239 19 043 19 078 3 361 1 165 85 94 89
    2 1 453 1 302 1 257 196 45 86 96 91
    3 3 864 3 560 3 236 528 324 84 91 87
    平均 85 94 89
    2018年 1 15 675 14 174 13 723 1 952 451 87 97 92
    2 1 244 1 102 1 046 198 56 84 95 89
    3 3 552 3 384 3 078 474 216 86 93 89
    平均 86 95 90
    2019年 1 14 309 13 207 12 985 1 324 222 91 98 94
    2 1 172 1 094 1 059 113 35 90 97 93
    3 3 585 3 281 3 281 257 0 93 100 96
    平均 91 98 94
    总体平均 87 96 91
    下载: 导出CSV
  • [1]

    Lynch H J, LaRue M A. First Global Census of the Adélie Penguin[J]. The Auk, 2014, 131(4): 457-466. doi: 10.1642/AUK-14-31.1

    [2]

    Taylor R, Wilson P. Recent Increase and Southern Expansion of Adelie Penguin Populations in the Ross Sea, Antarctica, Related to Climatic Warming[J]. New Zealand Journal of Ecology, 1990, 14: 25-29.

    [3]

    Turner J, Barrand N E, Bracegirdle T J, et al. Antarctic Climate Change and the Environment: An Update[J]. Polar Record, 2014, 50(3): 237-259. doi: 10.1017/S0032247413000296

    [4]

    Turner J, Bindschadler R, Convey P, et al. Antarctic Climate Change and the Environment: A Contribution to the International Polar Year 2007—2008[J]. Scientific Committee on Antarctic Research Scott Polar Research Institute, 2009, 83(11): 49-50.

    [5]

    Böning C W, Dispert A, Visbeck M, et al. The Response of the Antarctic Circumpolar Current to Recent Climate Change[J]. Nature Geoscience, 2008, 1(12): 864-869. doi: 10.1038/ngeo362

    [6]

    Bracegirdle T J, Connolley W M, Turner J. Antarctic Climate Change over the Twenty First Century[J]. Journal of Geophysical Research, 2008, 113(D3): D03103.

    [7]

    Stammerjohn S, Massom R, Rind D, et al. Regions of Rapid Sea Ice Change: An Inter-Hemispheric Seasonal Comparison[J]. Geophysical Research Letters, 2012, 39(6): L06501.

    [8]

    Turner J, Marshall G J, Clem K, et al. Antarctic Temperature Variability and Change from Station Data[J]. International Journal of Climatology, 2020, 40(6): 2986-3007. doi: 10.1002/joc.6378

    [9] 孙维萍, 蔡明红, 王海燕, 等. 阿德雷岛企鹅种群分布、繁殖行为及其环境影响因子分析[J]. 极地研究, 2010, 22(1): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201001005.htm

    Sun Weiping, Cai Minghong, Wang Haiyan, et al. Distribution and Reproductive Behavior of Penguins on Ardley Island and Their Environmental Impact Factors[J]. Chinese Journal of Polar Research, 2010, 22(1): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201001005.htm

    [10]

    Dias M P, Warwick-Evans V, Carneiro A B, et al. Using Habitat Models to Identify Marine Important Bird and Biodiversity Areas for Chinstrap Penguins Pygoscelis Antarcticus in the South Orkney Islands[J]. Polar Biology, 2019, 42(1): 17-25. doi: 10.1007/s00300-018-2404-4

    [11]

    Trivelpiece W Z, Hinke J T, Miller A K, et al. Variability in Krill Biomass Links Harvesting and Climate Warming to Penguin Population Changes in Antarctica[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(18): 7625-7628. doi: 10.1073/pnas.1016560108

    [12]

    Sailley S F, Ducklow H W, Moeller H V, et al. Carbon Fluxes and Pelagic Ecosystem Dynamics near Two Western Antarctic Peninsula Adélie Penguin Colonies: An Inverse Model Approach[J]. Marine Ecology Progress Series, 2013, 492: 253-272. doi: 10.3354/meps10534

    [13]

    Lynch H J, Naveen R, Trathan P N, et al. Spatially Integrated Assessment Reveals Widespread Changes in Penguin Populations on the Antarctic Peninsula[J]. Ecology, 2012, 93(6): 1367-1377. doi: 10.1890/11-1588.1

    [14]

    Ainley D G, Clarke E D, Arrigo K, et al. Decadal-Scale Changes in the Climate and Biota of the Pacific Sector of the Southern Ocean, 1950s to the 1990s[J]. Antarctic Science, 2005, 17(2): 171-182. doi: 10.1017/S0954102005002567

    [15]

    Ainley D, Russell J, Jenouvrier S, et al. Antarctic Penguin Response to Habitat Change as Earth's Troposphere Reaches 2 ℃ Above Preindustrial Levels[J]. Ecological Monographs, 2010, 80(1): 49-66. doi: 10.1890/08-2289.1

    [16]

    Chen X T, Cheng X, Zhang B G, et al. Lagged Response of Adélie Penguin (Pygoscelis Adeliae) Abundance to Environmental Variability in the Ross Sea, Antarctica[J]. Polar Biology, 2020, 43(11): 1769-1781. doi: 10.1007/s00300-020-02743-x

    [17]

    LaRue M A, Lynch H J, Lyver P B, et al. A Method for Estimating Colony Sizes of Adélie Penguins Using Remote Sensing Imagery[J]. Polar Biology, 2014, 37(4): 507-517. doi: 10.1007/s00300-014-1451-8

    [18]

    Schwaller M R, Benninghoff W S, Olson C E. Prospects for Satellite Remote Sensing of Adelie Penguin Rookeries[J]. International Journal of Remote Sensing, 1984, 5(5): 849-853. doi: 10.1080/01431168408948868

    [19]

    Schwaller M R, Olson C E, Ma Z, et al. A Remote Sensing Analysis of Adélie Penguin Rookeries[J]. Remote Sensing of Environment, 1989, 28: 199-206. doi: 10.1016/0034-4257(89)90113-2

    [20] 沈校熠, 柯长青, 张杰. 南极帝企鹅种群栖息地动态变化遥感分析[J]. 地球信息科学学报, 2017, 19(8): 1132-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201708015.htm

    Shen Xiaoyi, Ke Changqing, Zhang Jie. Analysis of Antarctic Emperor Penguins Colonies Changes Based on Remote Sensing[J]. Journal of Geo⁃Information Science, 2017, 19(8): 1132-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201708015.htm

    [21]

    Fretwell P T, Larue M A, Morin P, et al. An Emperor Penguin Population Estimate: The First Global, Synoptic Survey of a Species from Space[J]. PLoS One, 2012, 7(4): e33751. doi: 10.1371/journal.pone.0033751

    [22]

    Woehler E J, Riddle M J. Spatial Relationships of Adélie Penguin Colonies: Implications for Assessing Population Changes from Remote Imagery[J]. Antarctic Science, 1998, 10(4): 449-454. doi: 10.1017/S0954102098000546

    [23]

    Lynch H J, Schwaller M R. Mapping the Abundance and Distribution of Adélie Penguins Using Landsat-7: First Steps Towards an Integrated Multi-sensor Pipeline for Tracking Populations at the Continental Scale[J]. PLoS One, 2014, 9(11): e113301. doi: 10.1371/journal.pone.0113301

    [24]

    Mathew R, Schwaller D. Continental-Scale Mapping of Adélie Penguin Colonies from Landsat Imagery[J]. Remote Sensing of Environment, 2013, 139: 353-364. doi: 10.1016/j.rse.2013.08.009

    [25]

    Mustafa O, Pfeifer C, Peter H U, et al. Pilot Study on Monitoring Climate-Induced Changes in Penguin Colonies in the Antarctic Using Satellite Images[M]//Berlin : Federal Environment Agency, 2012.

    [26]

    LaRue M A, Ainley D G, Swanson M, et al. Climate Change Winners: Receding Ice Fields Facilitate Colony Expansion and Altered Dynamics in an Adélie Penguin Metapopulation[J]. PLoS One, 2013, 8(4): e60568. doi: 10.1371/journal.pone.0060568

    [27]

    Korczak-Abshire M, Zmarz A, Rodzewicz M, et al. Study of Fauna Population Changes on Penguin Island and Turret Point Oasis (King George Island, Antarctica) Using an Unmanned Aerial Vehicle[J]. Polar Biology, 2019, 42(1): 217-224. doi: 10.1007/s00300-018-2379-1

    [28]

    Krüger L, Jouanneau W, et al. Unmanned Aerial Vehicle (UAV) Survey of the Antarctic Shag (Leucocarbo Bransfieldensis) Breeding Colony at Harmony Point, Nelson Island, South Shetland Islands[J]. Polar Biology, 2020, 43(2): 187-191. doi: 10.1007/s00300-019-02616-y

    [29]

    Norton-Griffiths M. Reducing Counting Bias in Aerial Censuses by Photography[J]. African Journal of Ecology, 1974, 12(3): 245-248. doi: 10.1111/j.1365-2028.1974.tb00119.x

    [30]

    Lowry M S. Counts of California Sea Lion (Zalophus Californianus) Pups from Aerial Color Photographs and from the Ground: A Comparison of Two Methods[J]. Marine Mammal Science, 1999, 15(1): 143-158. doi: 10.1111/j.1748-7692.1999.tb00786.x

    [31]

    Bird C N, Dawn A H, Dale J L, et al. A Semi-automated Method for Estimating Adélie Penguin Colony Abundance from a Fusion of Multispectral and Thermal Imagery Collected with Unoccupied Aircraft Systems[J]. Remote Sensing, 2020, 12(22): 3692. doi: 10.3390/rs12223692

    [32] 熊登亮, 陈舫益. 采用无人机影像生成高原山区高精度DEM的一种方法[J]. 测绘与空间地理信息, 2014, 37(1): 127-128. doi: 10.3969/j.issn.1672-5867.2014.01.038

    Xiong Dengliang, Chen Fangyi. One Method of Using UAV Image to Generate High Resolution DEM in Mountain Plateau[J]. Geomatics & Spatial Information Technology, 2014, 37(1): 127-128. doi: 10.3969/j.issn.1672-5867.2014.01.038

    [33] 陈云浩, 冯通, 史培军, 等. 基于面向对象和规则的遥感影像分类研究[J]. 武汉大学学报(信息科学版), 2006, 31(4): 316-320. http://ch.whu.edu.cn/article/id/2432

    Chen Yunhao, Feng Tong, Shi Peijun, et al. Classification of Remot Sensing Image Based on Object Oriented and Class Rules[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 316-320. http://ch.whu.edu.cn/article/id/2432

    [34] 韩闪闪, 李海涛, 顾海燕. 面向对象的土地利用变化检测方法研究[J]. 遥感信息, 2009, 24(3): 23-29. doi: 10.3969/j.issn.1000-3177.2009.03.006

    Han Shanshan, Li Haitao, Gu Haiyan. The Study on Land Use Change Detection Based on Object-Oriented Analysis[J]. Remote Sensing Information, 2009, 24(3): 23-29. doi: 10.3969/j.issn.1000-3177.2009.03.006

    [35] 冀明, 张宝钢, 张媛媛, 等. 南极企鹅数量识别及变化趋势分析: 基于无人机航拍的高分辨率影像[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901004.htm

    Ji Ming, Zhang Baogang, Zhang Yuanyuan, et al. Sizing and Trend Analysis of Penguin Numbers in Antarctic from High Resolution Photography by Unmanned Aerial Vehicles[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(1): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901004.htm

    [36]

    He H, Cheng X, Li X L, et al. Aerial Photography Based Census of Adélie Penguin and Its Application in CH4 and N2O Budget Estimation in Victoria Land, Antarctic[J]. Scientific Reports, 2017, 7: 12942. doi: 10.1038/s41598-017-13380-6

    [37] 汪求来. 面向对象遥感影像分类方法及其应用研究: 以深圳市福田区植被提取为例[D]. 南京: 南京林业大学, 2008.

    Wang Qiulai. Study on Object-Oriented Remote Sensing Image Classification and Its Application —Taking Urban Vegetation Extraction in Futian, Shenzhen City for Example[D]. Nanjing: Nanjing Forestry University, 2008.

    [38]

    Che-Castaldo C, Jenouvrier S, Youngflesh C, et al. Pan-Antarctic Analysis Aggregating Spatial Estimates of Adélie Penguin Abundance Reveals Robust Dynamics Despite Stochastic Noise[J]. Nature Communications, 2017, 8: 832. doi: 10.1038/s41467-017-00890-0

图(7)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 网络出版日期:  2023-04-16
  • 发布日期:  2023-04-04

目录

    /

    返回文章
    返回