联合地震位错模型和InSAR数据构建2017年九寨沟Mw 6.5地震同震三维形变场

Deriving 3D Coseismic Deformation Field of 2017 Jiuzhaigou Earthquake with Elastic Dislocation Model and InSAR Data

  • 摘要: 利用哨兵(Sentinel)-1A卫星升、降轨影像,在地震位错模型约束下获取了2017年九寨沟Mw 6.5地震的高质量三维形变场。首先,利用合成孔径雷达干涉测量技术(interferometric synthetic aperture radar,InSAR)提取九寨沟地震升、降轨同震形变场;然后,通过“两步法”反演获取该地震发震断层的几何参数和分布式滑动模型,以此为约束,采用方差分量估计算法联合解算九寨沟地震三维形变场。结果表明,九寨沟地震同震三维形变场以水平位移为主,垂向形变较弱;南北向形变呈拉张趋势,断层上盘向南、下盘向北滑动,最大位移分别为-19.81 cm和14.38 cm;东西向形变不对称性明显,断层上盘西北部向东水平运动,最大位移为18.37 cm,下盘东南部向西运动,最大位移不足8 cm。将南北、东西向形变与6个全球导航卫星系统(global navigation satellite system,GNSS)台站观测数据进行比较,两者一致性较好且均方根误差较小,分别为1.44 cm和1.77 cm,表明联合升、降轨InSAR观测和地震位错模型约束构建同震三维形变场方法具有较高可行性,显著降低了大地测量数据不足、InSAR观测对南北向形变不敏感等问题的影响。

     

    Abstract:
      Objectives  The coseismic deformation field of 2017 Jiuzhaigou earthquake has been investigated by previous numerous studies. However, these studies most focus on the one-dimensional(1D) ground motion along the radar line of sight(LOS), thus resulting in anamorphic coseismic displacements.
      Methods  We construct high-quality three-dimensional(3D) coseismic deformation field using ascending and descending synthetic aperture radar(SAR) data from Sentinel-1A satellite with constraint of the elastic dislocation model to reflect the real movement patterns of 2017 Jiuzhaigou earthquake. Firstly, we use differential interferometry method to generate LOS coseismic deformation field with SAR images. Then, a two-step inversion algorithm is used to subdivide the fault plane, and obtain the geometric parameters and the optimal fault slip distribution. With constraint of this fault model, we take the variance component estimation approach to reconstruct 3D coseismic deformation field based on interferometric synthetic aperture radar(InSAR) measurements.
      Results  3D coseismic deformation results show that the coseismic deformation field is dominated by horizontal displacement. In the north-south(N) direction, the maximum displacement of the hanging wall is -19.81 cm and 14.38 cm in the footwall. In the east-west(E) direction, the maximum displacement of the hanging wall is 18.37 cm for the northwestern, while that of the footwall is -7.84 cm for the Southeastern. In the vertical(U) direction, there is a little uplift in the northern of the fault and the maximum is about 3 cm.
      Conclusions  The derived north-south and east-west displacements are in good consistency of the global navigation satellite system investigations, indicating that combing InSAR measurements and elastic dislocation model to reconstruction 3D seismic deformation field is feasible and effective, which overcomes the problem of insufficient geodetic data and offers extensive future usage for measuring earthquake deformation.

     

/

返回文章
返回