利用三维加速度点质量模型法解算华北地区陆地水储量变化

魏伟, 苏勇, 郑文磊, 谷延超, 张洛恺

魏伟, 苏勇, 郑文磊, 谷延超, 张洛恺. 利用三维加速度点质量模型法解算华北地区陆地水储量变化[J]. 武汉大学学报 ( 信息科学版), 2022, 47(4): 551-560. DOI: 10.13203/j.whugis20190423
引用本文: 魏伟, 苏勇, 郑文磊, 谷延超, 张洛恺. 利用三维加速度点质量模型法解算华北地区陆地水储量变化[J]. 武汉大学学报 ( 信息科学版), 2022, 47(4): 551-560. DOI: 10.13203/j.whugis20190423
WEI Wei, SU Yong, ZHENG Wenlei, GU Yanchao, ZHANG Luokai. Monitoring the Variation of Terrestrial Water Storage in North China by Three-Dimensional Acceleration Point-Mass Modeling Approach[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 551-560. DOI: 10.13203/j.whugis20190423
Citation: WEI Wei, SU Yong, ZHENG Wenlei, GU Yanchao, ZHANG Luokai. Monitoring the Variation of Terrestrial Water Storage in North China by Three-Dimensional Acceleration Point-Mass Modeling Approach[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 551-560. DOI: 10.13203/j.whugis20190423

利用三维加速度点质量模型法解算华北地区陆地水储量变化

基金项目: 

国家自然科学基金 41804077

西南石油大学测绘遥感青年科技创新团队 2017CXTD09

详细信息
    作者简介:

    魏伟,硕士生,主要从事卫星重力监测全球质量变化等研究。wei0182@foxmail.com

    通讯作者:

    苏勇,博士,副教授。suyongme@foxmail.com

  • 中图分类号: P228

Monitoring the Variation of Terrestrial Water Storage in North China by Three-Dimensional Acceleration Point-Mass Modeling Approach

Funds: 

The National Natural Science Foundation of China 41804077

the Scientific and Technological Innovation Team of SWPU 2017CXTD09

More Information
    Author Bio:

    WEI Wei, postgraduate, specializes in satellite gravity monitoring mass change. E-mail: wei0182@foxmail.com

    Corresponding author:

    SU Yong, PhD, associate professor. E-mail: suyongme@foxmail.com

  • 摘要: 三维加速度点质量模型法为反演陆地水储量变化提供了新的途径,采用三维加速度点质量模型法计算了中国华北地区2003—2014年的水储量变化。为了检验反演结果,采用球谐系数法以及德克萨斯大学空间研究中心(Center for Space Research,University of Texas at Austin,CSR)发布的RL06 Mascon模型进行对比分析。研究结果表明,两种方法反演结果均反映出华北地区陆地水储量长期处于亏损趋势,但不同方法计算的亏损速度有一定的差别,三维加速度点质量模型法采用CSR提供的RL06数据反演的华北地区陆地水储量亏损速度为-3.09 cm/a,而球谐系数法反演结果为-2.60 cm/a;三维加速度点质量模型法特征点的反演结果与Mascon法相关系数更高,而球谐系数法与三维加速度点质量模型法结果之间的差异主要是由条带噪声约束平滑策略不一致导致的。
    Abstract:
      Objectives  The lack of water resources in North China has severely affected the further development of industry and agriculture in the region. Previous studies have shown that terrestrial water storage (TWS) in North China are in a long-term loss trend, but the inversion methods are different, and three-dimensional acceleration point-mass modeling approach (3D-PMA) provides a new way for inversion of changes in TWS.
      Methods  We invert TWS in North China from 2003 to 2014 based on 3D-PMA. 3D-PMA decomposes the changes of the satellite's perturbation force into the three directions of the coordinate axis, and establishes the least square equation through theoretical calculations and observations.We use the average spherical harmonic coefficients from 2003 to 2014 as the background model, and replace C20 with satellite laser ranging (SLR) data. The monthly difference relative to the background model is used as the change in the spherical harmonic coefficient caused by the change in surface mass. For the ill-posed problems of least squares, the 600 km linear-type spatial constraint is adopted. In order to verify the results, spherical harmonic approach (SH) and the RL06 Mascon model released by Center for Space Research, University of Texas at Austin (CSR) are used for comparative analysis.
      Results and Conclusions  The inversion results of the 3D-PMA and SH approaches indicate that TWS in North China have been in a long-term loss trend, but the loss rates calculated by different methods have certain differences. The loss rate of 3D-PMA is -3.09 cm/a, and SH is -2.60 cm/a while using RL06 data provided by CSR to inverse TWS in North China. According to the calculation results of the characteristic points, 3D-PMA and Mascon have a higher correlation, and the difference between SH and 3D-PMA is mainly due to the inconsistency of the striping noise constraint smoothing strategy.
  • 图  1   华北地区示意图

    Figure  1.   Map of North China

    图  2   L曲线示意图

    Figure  2.   Illustration of L-curve

    图  3   2010-01水储量变化空域图

    Figure  3.   Spatial Map of TWS Change in January 2010

    图  4   2003-2014年东亚地区水储量变化速率

    Figure  4.   Trend of TWS in East Asia in 2003-2014

    图  5   特征点A水储量变化趋势

    Figure  5.   TWS Trend of Characteristic Point A

    图  6   特征点B水储量变化趋势

    Figure  6.   TWS Trend of Characteristic Point B

    图  7   特征点C水储量变化趋势

    Figure  7.   TWS Trend of Characteristic Point C

    图  8   特征点D水储量变化趋势

    Figure  8.   TWS Trend of Characteristic Point D

    图  9   2003-2014年华北地区水储量变化速率

    Figure  9.   Trend of TWS in North China from 2003 to 2014

    图  10   GLDAS、Mascon反演的2003—2014年华北地区水储量变化速率

    Figure  10.   Trend of TWS in North China from 2003 to 2014 Using GLDAS and Mascon Model

    表  1   球谐系数法与三维加速度点质量模型法特征点反演结果相关系数

    Table  1   Correlation Coefficient of Results of Characteristic Points by Spherical Harmonic Approach and Three-Dimensional Acceleration Point-Mass Modeling Approach

    特征点 GFZ数据 JPL数据 CSR数据
    A 0.90 0.87 0.93
    B 0.91 0.93 0.94
    C 0.89 0.90 0.94
    D 0.90 0.90 0.95
    下载: 导出CSV

    表  2   球谐系数法、三维加速度点质量模型法特征点反演结果与Mascon法结果的相关系数

    Table  2   Correlation Coefficient of Results of Characteristic Points by Spherical Harmonic Approach, Three-Dimensional Acceleration Point-Mass Modeling Approach and Mascon Model

    特征点 三维加速度点质量模型法 球谐系数法
    GFZ JPL CSR GFZ JPL CSR
    A 0.70 0.80 0.89 0.49 0.55 0.74
    B 0.85 0.86 0.91 0.73 0.78 0.81
    C 0.68 0.67 0.80 0.51 0.54 0.70
    D 0.48 0.56 0.67 0.33 0.45 0.60
    下载: 导出CSV

    表  3   基于GFZ、CSR、JPL2003—2014年数据反演水储量变化趋势/(cm·a-1)

    Table  3   Trend of TWS in North China Based on 2003-2014 Data of GFZ、CSR and JPL/(cm·a-1)

    方法 GFZ JPL CSR
    三维加速度点质量模型法 -3.41 -3.76 -3.09
    球谐系数法 -2.90 -3.15 -2.60
    下载: 导出CSV
  • [1] 苏勇, 于冰, 游为, 等. 基于重力卫星数据监测地表质量变化的三维点质量模型法[J]. 地球物理学报, 2017, 60(1): 50-60 doi: 10.3969/j.issn.1672-7940.2017.01.009

    Su Yong, Yu Bin, You Wei, et al. Surface Mass Distribution from Gravity Satellite Observations by Using Three-Dimensional Acceleration Point-Mass Modeling Approach[J]. Chinese Journal of Geophysics, 2017, 60(1): 50-60 doi: 10.3969/j.issn.1672-7940.2017.01.009

    [2]

    Wahr J, Molenaar M, Bryan F. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B12): 30205-30229 doi: 10.1029/98JB02844

    [3] 冯伟, Jean-Michel Lemoine, 钟敏, 等. 利用重力卫星GRACE监测亚马逊流域2002-2010年的陆地水变化[J]. 地球物理学报, 2012, 55(3): 814-821 doi: 10.6038/j.issn.0001-5733.2012.03.011

    Feng Wei, Jean-Michel Lemoine, Zhong Min, et al. Terrestrial Water Storage Changes in the Amazon Basin Measured by GRACE During 2002-2010[J]. Chinese Journal of Geophysics, 2012, 55(3): 814-821 doi: 10.6038/j.issn.0001-5733.2012.03.011

    [4] 李婉秋, 王伟, 章传银, 等. 利用Forward-Modeling方法反演青藏高原水储量变化[J]. 武汉大学学报·信息科学版, 2020, 45(1): 141-149 doi: 10.13203/j.whugis20180263

    Li Wanqiu, Wang Wei, Zhang Chuanyin, et al. Water Storage Variation Inversion in the Tibetan Plateau by Using Forward-Modeling Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 141-149 doi: 10.13203/j.whugis20180263

    [5] 李圳, 章传银, 柯宝贵, 等. 顾及GRACE季节影响的华北平原水储量变化反演[J]. 测绘学报, 2018, 47(7): 940-949 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201807008.htm

    Li Zhen, Zhang Chuanyin, Ke Baogui, et al. North Plain Water Storage Variation Analysis Based on GRACE and Seasonal Influence Considering[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 940-949 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201807008.htm

    [6]

    Gautam P. A Comparative Appraisal of Ground Water Resources Using GRACE-GPS Data in Highly Urbanised Regions of Uttar Pradesh, India[J]. Sustainable Water Resources Management, 2017, 3(4): 441-449 doi: 10.1007/s40899-017-0109-4

    [7] 杨元德, 鄂栋臣, 晁定波. 利用GRACE数据反演格陵兰冰盖冰雪质量变化[J]. 武汉大学学报· 信息科学版, 2009, 34(8): 961-964 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200908020.htm

    Yang Yuande, E Dongchen, Chao Dingbo. The Inversion of Ice Mass Change in Greenland Ice Sheet Using GRACE Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 961-964 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200908020.htm

    [8]

    Muller P M, Sjogren W L. Mascons: Lunar Mass Concentrations[J]. Science, 1968, 161(3842): 680-684 doi: 10.1126/science.161.3842.680

    [9]

    Rowlands D D, Luthcke S B, McCarthy J J, et al. Global Mass Flux Solutions from GRACE: A Comparison of Parameter Estimation Strategies-Mass Concentrations Versus Stokes Coefficients[J]. Journal of Geophysical Research Solid Earth, 2010, 115(B1): B01403

    [10]

    Han S C, Shum C K, Jekeli C, et al. Improved Estimation of Terrestrial Water Storage Changes from GRACE[J]. Geophysical Research Letters, 2005, 32(7): L07302

    [11]

    Baur O, Sneeuw N. Assessing Greenland Ice Mass Loss by Means of Point-mass Modeling: A Viable Methodology[J]. Journal of Geodesy, 2011, 85(9): 607-615 doi: 10.1007/s00190-011-0463-1

    [12]

    Baur O. Greenland Mass Variation from TimeVariable Gravity in the Absence of GRACE[J]. Geophysical Research Letters, 2013, 40(16) : 4289-4293 doi: 10.1002/grl.50881

    [13] 郭飞霄, 苗岳旺, 肖云, 等. 采用点质量模型方法反演中国大陆及周边地区陆地水储量变化[J]. 武汉大学学报·信息科学版, 2017, 42(7): 1002-1007 doi: 10.13203/j.whugis20150031

    Guo Feixiao, Miao Yuewang, Xiao Yun, et al. Recovery Water Storage Variation in China and Its Adjacent Area by Method of Point-Mass Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1002-1007 doi: 10.13203/j.whugis20150031

    [14] 苏勇, 郑文磊, 余彪, 等. 反演地表质量变化的附有空间约束的三维加速度点质量模型法[J]. 地球物理学报, 2019, 62(2): 508-519 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201902006.htm

    Su Yong, Zheng Wenlei, Yu Biao, et al. Surface Mass Distribution Derived from Three-Dimensional Acceleration Point-Mass Modeling Approach with Spatial Constraint Methods[J]. Chinese Journal of Geophysics, 2019, 62(2): 508-519 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201902006.htm

    [15] 郝立生, 丁一汇. 华北降水变化研究进展[J]. 地理科学进展, 2012, 31(5): 593-601 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201205010.htm

    Hao Lisheng, Ding Yihui. Progress of Precipitation Research in North China[J]. Progress in Geography, 2012, 31(5): 593-601 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201205010.htm

    [16] 姜明栋, 刘熙宇, 许静茹, 等. 京津冀地区经济增长对工业用水的脱钩效应及其驱动因素研究[J]. 干旱区资源与环境, 2019, 33(11): 70-76 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201911010.htm

    Jiang Mindong, Liu Xiyu, Xu Jingru, et al. Decoupling Effect Between Economic Growth and Industrial Water Use and Its Driving Factors in Beijing-Tianjin-Hebei Region[J]. Journal of Arid Land Resources and Environment, 2019, 33(11): 70-76 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201911010.htm

    [17] 段晓峰, 许学工, 王若柏. 天津沿海地区地面沉降及其影响因素[J]. 北京大学学报·自然科学版, 2014, 50(6): 1071-1076 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201406011.htm

    Duan Xiaofeng, Xu Xuegong, Wang Ruobai. Land Subsidence and Its Influencing Factors in Tianjin Coastal Area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1071-1076 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201406011.htm

    [18] 翟宁, 王泽民, 伍岳, 等. 利用GRACE反演长江流域水储量变化[J]. 武汉大学学报·信息科学版, 2009, 34(4): 436-439 http://ch.whu.edu.cn/article/id/1221

    Zhai Ning, Wang Zemin, Wu Yue, et al. Recovery of Yangtze River Basin Water Storage by GRACE Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 436-439 http://ch.whu.edu.cn/article/id/1221

    [19]

    Feng W, Zhong M, Lemoine J M, et al. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-Based Measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118 doi: 10.1002/wrcr.20192

    [20] 冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(5): 1630-1642 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201705002.htm

    Feng Wei, Wang Changqing, Mu Dapeng, et al. Groundwater Storage Variations in the North China Plain from GRACE with Spatial Constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201705002.htm

    [21]

    Mayer-Gürr T. Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE[D]. Bonn: University of Bonn, 2006

    [22] 胡志刚, 花向红. 利用最优正则化方法确定Tikhonov正则化参数[J]. 测绘科学, 2010, 35(2): 51-53 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201002018.htm

    Hu Zhigang, Hua Xianghong. Deriving Tikhonov Parameter Using Optimal Regularization Method[J]. Science of Surveying and Mapping, 2010, 35(2): 51-53 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201002018.htm

    [23] 冯贵平, 宋清涛, 蒋兴伟, 等. 卫星重力监测全球地下水储量变化及其特征[J]. 遥感技术与应用, 2019, 34(4): 822-828 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201904017.htm

    Feng Guiping, Song Qingtao, Jiang Xingwei. Global Groundwater Storage Changes and Characteristics Observed by Satellite Gravimetry[J]. Remote Sensing Technology and Application, 2019, 34(4): 822-828 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201904017.htm

    [24] 詹金刚, 王勇. 卫星重力捕捉龙滩水库储水量变化[J]. 地球物理学报, 2011, 54(5): 1187-1192 doi: 10.3969/j.issn.0001-5733.2011.05.007

    Zhan Jingang, Wang Yong. Detect Water Storage Variation of Longtan Reservoir with GRACE Data[J]. Chinese Journal of Geophysics, 2011, 54(5): 1187-1192 doi: 10.3969/j.issn.0001-5733.2011.05.007

    [25] 李婉秋, 王伟, 章传银, 等. 利用GRACE卫星重力数据监测关中地区地下水储量变化[J]. 地球物理学报, 2018, 61(6): 2237-2245 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806007.htm

    Li Wanqiu, Wang Wei, Zhang Chuanyin, et al. Monitoring Groundwater Storage Variations in the Guanzhong Area Using GRACE Satellite Gravity Data[J]. Chinese Journal of Geophysics, 2018, 61(6): 2237-2245 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806007.htm

图(10)  /  表(3)
计量
  • 文章访问数:  612
  • HTML全文浏览量:  169
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 发布日期:  2022-04-04

目录

    /

    返回文章
    返回