阿尔金断裂带宽幅InSAR对流层延迟估计方法评估

李鹏, 高梦瑶, 李振洪, 王厚杰

李鹏, 高梦瑶, 李振洪, 王厚杰. 阿尔金断裂带宽幅InSAR对流层延迟估计方法评估[J]. 武汉大学学报 ( 信息科学版), 2020, 45(6): 879-887. DOI: 10.13203/j.whugis20190236
引用本文: 李鹏, 高梦瑶, 李振洪, 王厚杰. 阿尔金断裂带宽幅InSAR对流层延迟估计方法评估[J]. 武汉大学学报 ( 信息科学版), 2020, 45(6): 879-887. DOI: 10.13203/j.whugis20190236
LI Peng, GAO Mengyao, LI Zhenhong, WANG Houjie. Evaluation of Wide-Swath InSAR Tropospheric Delay Estimation Methods over the Altyn Tagh Fault[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 879-887. DOI: 10.13203/j.whugis20190236
Citation: LI Peng, GAO Mengyao, LI Zhenhong, WANG Houjie. Evaluation of Wide-Swath InSAR Tropospheric Delay Estimation Methods over the Altyn Tagh Fault[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 879-887. DOI: 10.13203/j.whugis20190236

阿尔金断裂带宽幅InSAR对流层延迟估计方法评估

基金项目: 国家自然科学基金(41806108);国家重点研发计划(2017YFE0133500,2016YFA0600903);山东省自然科学基金(ZR2016DB30);中国博士后科学基金(2016M592248);中央高校基本科研业务费专项资金(201713039);青岛市自主创新计划应用基础研究项目(16-5-1-25-jch);青岛市博士后人员应用研究项目。
详细信息
    作者简介:

    李鹏,博士,讲师,主要从事雷达干涉测量及应用研究。pengli@ouc.edu.cn

    通讯作者:

    李振洪,博士,教授。 E-mail:Zhenhong.Li@newcastle.ac.uk

  • 中图分类号: P237

Evaluation of Wide-Swath InSAR Tropospheric Delay Estimation Methods over the Altyn Tagh Fault

Funds: The National Natural Science Foundation of China (41806108); the National Key Research and Development Program of China (2017YFE0133500, 2016YFA0600903); Shandong Provincial Natural Science Foundation (ZR2016DB30); China Postdoctoral Science Foundation (2016M592248); the Fundamental Research Funds for the Central Universities (201713039); Qingdao Indigenous Innovation Program (16‐5‐1‐25‐jch); Qingdao Postdoctoral Application Research Project.
More Information
  • 摘要: 近年来,宽幅合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)技术已被广泛用于地质灾害普查、地壳形变监测等方面,但对流层相位延迟影响极大限制了大范围、缓慢构造形变监测的精度。以覆盖地形起伏强烈的阿尔金断裂带西段的两类宽幅InSAR时间序列为例,分析了欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)、InSAR通用型大气改正在线服务(generic atmospheric correction online service for InSAR,GACOS)、地形相关线性模型这3类方法对大尺度对流层延迟的改正效果。结果表明,经GACOS改正后的Envisat ASAR与Sentinel-1宽幅InSAR干涉图序列的相位标准差均值削减量分别可达68.1%和54.5%,整体优于ECMWF和地形相关线性改正方法,能够为国内外InSAR用户开展宽幅InSAR大范围地质灾害监测等应用提供关键可靠的支持。
    Abstract: In recent years, wide-swath (WS) interferometric synthetic aperture radar (InSAR) technique that has the potential to produce continental-scale maps has been widely used in geological disaster survey and crustal deformation monitoring. However, the impact of tropospheric delay greatly limits its accuracy in mapping small amounts of ground deformation over large spatial areas. Three common used methods, that is ECMWF (European Centre for Medium-Range Weather Forecasts), GACOS (generic atmospheric correction online service for InSAR) and topography-correlated linear relationship, are evaluated to investigate their statistical performance with WS InSAR time series derived from Envisat ASAR ScanSAR and Sentinel-1 TOPOSAR modes over the western segment of the Altyn Tagh Fault. The results show that the GACOS correction method is superior to the other two methods and performs best in capturing both topography-correlated and turbulent mixing tropospheric delays. For Envisat ASAR and Sentinel-1 datasets, the mean reduction of phase standard deviation after GACOS correction can reach 68.1% and 54.5% respectively. The linear correction method can perform relatively well in large-scale areas with rough topography when vertical atmospheric stratification dominates the tropospheric delay. Due to a lack of ground meteorological observation, ECMWF products with limited spatial and temporal resolution cannot accurately reveal the local details. As a fast, robust and effective online service for tropospheric delay estimation and correction, GACOS products can provide critical and reliable support for global InSAR users in large-scale geological disaster applications.
  • 致谢: 感谢Romain Jolivet、David Bekaert、冯万鹏、王华等专家学者提供的软件支持。本文研究工作得到了英国环境研究委员会地震火山构造观测与建模中心项目(COMET,come30001)、英国LiCS空间对地观测项目(NE/K010794/1)、中欧科技合作龙计划4期项目(ESA⁃MOST DRAGON⁃4,32244)、中国海洋大学绿卡人才工程科研经费项目的支持。所用Envisat ASAR(PI 8690)与Sentinel⁃1数据均由欧洲空间局免费提供。
  • 图  1   阿尔金断裂带西段对应的SAR数据覆盖情况

    Figure  1.   SAR Data Coverage in the Western Segment of the Altyn Tagh Fault

    图  2   对流层延迟改正方法流程图

    Figure  2.   Flowchart of Tropospheric Delay Correction Method

    图  3   3种对流层延迟改正方法对Envisat ASAR宽幅InSAR干涉图的改正效果

    Figure  3.   Correction Effects of Envisat ASAR Wide‐Swath InSAR Interferograms by Three Tropospheric Delay Methods

    图  4   3种对流层延迟改正方法对Sentinel‐1宽幅InSAR干涉图的改正效果

    Figure  4.   Correction Effects of Sentinel‐1 Wide‐Swath InSAR Interferograms by Three Tropospheric Delay Methods

    图  5   Envisat ASAR和Sentinel‐1干涉图对流层延迟改正前后的相位标准差削减情况

    Figure  5.   Phase Standard Deviation Reduction for Envisat ASAR and Sentinel‐1 Interferograms Before and After Tropospheric Correction

    图  6   去除轨道平面前后的Envisat ASAR与Sentinel‐1干涉图相位标准差变化相关性图

    Figure  6.   Correlation Maps of Phase Standard Deviation Change for Envisat ASAR and Sentinel‐1 Interferograms Before and After Orbital Ramp Removal

    表  1   不同对流层延迟改正方法统计结果

    Table  1   Statistics Results of Different Tropospheric Correction Methods

    数据源 统计指标 改正前 线性改正 线性改正+去除轨道平面 ECMWF改正 ECMWF改正+去除轨道平面 GACOS改正 GACOS改正+去除轨道平面
    Envisat ASAR干涉图 相位标准差均值/mm 27.0 23.6 12.9 26.9 11.0 23.0 8.6
    改正前后相位标准差均值的削减量/% 12.6 52.2 0.4 59.3 14.8 68.1
    Sentine-1 干涉图 相位标准差均值/mm 13.2 9.1 6.3 13.1 8.8 9.4 6.0
    改正前后相位标准差均值的削减量/% 31.1 52.3 0.8 33.3 28.8 54.5
    下载: 导出CSV
  • [1] 李鹏, 李振洪, 李陶, 等. 宽幅InSAR大地测量学与大尺度形变监测方法[J]. 武汉大学学报·信息科学版, 2017, 42(9):1195-1202 doi: 10.13203/j.whugis20150587

    Li Peng, Li Zhenhong, Li Tao, et al. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1195-1202 doi: 10.13203/j.whugis20150587

    [2] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报·信息科学版, 2019, 44(7):967-979 doi: 10.13203/j.whugis20190098

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring:Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979 doi: 10.13203/j.whugis20190098

    [3] 李振洪, 李鹏, 丁咚, 等. 全球高分辨率数字高程模型研究进展与展望[J]. 武汉大学学报·信息科学版, 2018, 43(12):1927-1942 doi: 10.13203/j.whugis20180295

    Li Zhenhong, Li Peng, Ding Dong, et al. Research Progress of Global High Resolution Digital Elevation Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1927-1942 doi: 10.13203/j.whugis20180295

    [4]

    Li Z, Cao Y, Wei J, et al. Time-Series InSAR Ground Deformation Monitoring:Atmospheric Delay Modeling and Estimating[J]. Earth-Science Reviews, 2019, 192:258-284 doi: 10.1016/j.earscirev.2019.03.008

    [5]

    Dong J, Zhang L, Liao M, et al. Improved Correction of Seasonal Tropospheric Delay in InSAR Observations for Landslide Deformation Monitoring[J]. Remote Sensing of Environment, 2019, 233:111370 doi: 10.1016/j.rse.2019.111370

    [6]

    Bekaert D P S, Walters R J, Wright T J, et al. Statistical Comparison of InSAR Tropospheric Correction Techniques[J]. Remote Sensing of Environment, 2015, 170:40-47 doi: 10.1016/j.rse.2015.08.035

    [7]

    Jolivet R, Agram P S, Lin N Y, et al. Improving InSAR Geodesy Using Global Atmospheric Models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2324-2341 doi: 10.1002/2013JB010588

    [8]

    Li Z H, Pasquali P, Cantone A, et al. MERIS Atmospheric Water Vapor Correction Model for Wide Swath Interferometric Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):257-261 doi: 10.1109/LGRS.2011.2166053

    [9]

    Lin Y N, Simons M, Hetland E A, et al. A Multiscale Approach to Estimating Topographically Correlated Propagation Delays in Radar Interferograms[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(9):Q09002 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010GC003228

    [10] 宋小刚, 李德仁, 廖明生, 等. 基于GPS观测量的InSAR干涉图中对流层改正方法及其论证[J]. 武汉大学学报·信息科学版, 2008, 33(3):233-236 http://ch.whu.edu.cn/article/id/1561

    Song Xiaogang, Li Deren, Liao Mingsheng, et al. A Method to Correct Tropospheric Delay in SAR Interferometry from GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3):233-236 http://ch.whu.edu.cn/article/id/1561

    [11]

    Li Z H, Fielding E J, Cross P, et al. Advanced InSAR Atmospheric Correction:MERIS/MODIS Combination and Stacked Water Vapour Models[J]. International Journal of Remote Sensing, 2009, 30(13):3343-3363 doi: 10.1080/01431160802562172

    [12]

    Parker A L, Biggs J, Walters R J, et al. Systematic Assessment of Atmospheric Uncertainties for InSAR Data at Volcanic Arcs Using Large-Scale Atmospheric Models:Application to the Cascade Volcanoes, United States[J]. Remote Sensing of Environment, 2015, 170:102-114 doi: 10.1016/j.rse.2015.09.003

    [13]

    Yu C, Li Z, Penna N T, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(10):9202-9222 doi: 10.1029/2017JB015305

    [14]

    Yu C, Li Z, Penna N T. Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model[J]. Remote Sensing of Environment, 2018, 204:109-121 doi: 10.1016/j.rse.2017.10.038

    [15]

    Elliott J R, Biggs J, Parsons B, et al. InSAR Slip Rate Determination on the Altyn Tagh Fault, Northern Tibet, in the Presence of Topographically Correlated Atmospheric Delays[J]. Geophysical Research Letters, 2008, 35(L12309):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008GL033659

    [16]

    Doin M P, Lasserre C, Peltzer G, et al. Corrections of Stratified Tropospheric Delays in SAR Interferometry:Validation with Global Atmospheric Models[J]. Journal of Applied Geophysics, 2009, 69(1):35-50 doi: 10.1016/j.jappgeo.2009.03.010

    [17]

    Jolivet R, Grandin R, Lasserre C, et al. Systematic InSAR Tropospheric Phase Delay Corrections from Global Meteorological Reanalysis Data[J]. Geophysical Research Letters, 2011, 38(17):L17311 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224700399/

    [18]

    Yu C, Penna N T, Li Z. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(3):2008-2025 doi: 10.1002/2016JD025753

    [19]

    Delacourt C. Tropospheric Correction of SAR Interferograms with Strong Topography:Application to Etna[J]. Geophysical Research Letters, 1998, 25(15):2849-2852 doi: 10.1029/98GL02112

    [20]

    Cavalié O, Doin M P, Lasserre C, et al. Ground Motion Measurement in the Lake Mead Area, Nevada, by Differential Synthetic Aperture Radar Interferometry Time Series Analysis:Probing the Lithosphere Rheological Structure[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B3):403 https://www.researchgate.net/publication/238013428_Ground_Motion_Measurement_in_the_Lake_Mead_Area_Nevada_USA_by_DinSAR_Time_Series_Analysis_Probing_of_the_Lithosphere_Rheological_Structure

  • 期刊类型引用(3)

    1. 周永章,陈川,张旗,王功文,肖凡,沈文杰,卞静,王亚,杨威,焦守涛,刘艳鹏,韩枫. 地质大数据分析的若干工具与应用. 大地构造与成矿学. 2020(02): 173-182 . 百度学术
    2. 王叶晨梓,杜震洪,张丰,刘仁义. 面向分片地图的多分辨率格点数据统一存取方法. 浙江大学学报(理学版). 2017(05): 584-590 . 百度学术
    3. 朱建章,石强,陈凤娥,史晓丹,董泽民,秦前清. 遥感大数据研究现状与发展趋势. 中国图象图形学报. 2016(11): 1425-1439 . 百度学术

    其他类型引用(6)

图(6)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-11-20
  • 发布日期:  2020-06-04

目录

    /

    返回文章
    返回