-
摘要: 近百年来,全球正经历着以变暖为显著特征的变化,海水增温膨胀、陆地冰川和极地冰盖融化等因素导致全球海平面持续上升。北极新奥尔松地区现保存有典型的极地原始生态系统,客观准确地分析该地区的海平面变化,可以更好地为该地区自然生态环境监测和保护以及气候变化研究等提供基础。联合利用卫星高度计、验潮站和全球卫星导航系统(global navigation satellite system,GNSS)观测资料分析新奥尔松地区的海平面变化的线性趋势和季节性规律,通过同时段资料(1993-2018年)的分析显示,该地区地壳呈上升趋势,上升速率为(8.09±0.19) mm/a;验潮站相对海平面呈下降趋势,下降速率为(-7.31±0.36) mm/a;利用地壳运动修正后的绝对海平面上升速率为(0.78±0.41) mm/a,低于全球同期水平,与卫星高度计观测的绝对海平面变化结果具有很好的一致性,二者相差(0.23±0.46) mm/a。在进行区域海平面变化分析时,可利用GNSS修正验潮站相对海平面获得该区域的绝对海平面变化。利用修正后的海平面资料分析结果显示,新奥尔松地区海平面变化具有明显的季节性规律,每年10月-11月为季节高海平面期,3月-4月为季节低海平面期。通过海表面温度与海平面的相关性分析认为,随着海表面温度变化,海平面也发生相应的变化。Abstract:Objectives Global warming has become a significant climate change in the past 100 years. And the global mean sea level continues rising caused by the thermal expansion of sea water and the melting of land-based glacier and polar ice. The Ny-Alesund area in Arctic has preserved a typical primitive polar ecosystem. The objective and accurate analysis of sea level change in this area can better provide a basis for monitoring and protection of natural ecological environment, and for the research of climate change.Methods This paper analyzed the liner trend and seasonal variation of sea level change by using data of satellite altimeter, tide gauge station and global navigation satellite system (GNSS) along Ny-Alesund coast from 1993 to 2018.Results The observation data at tide gauge station show that the rate of crust rise is (8.09±0.19) mm/a, and the rate of relative sea level decline is (-7.31±0.36) mm/a. So the rate of absolute sea level rise is (0.78±0.41) mm/a, which is similar to the result from observation data of satellite alti-meter with the difference of (0.23±0.46) mm/a, and is lower than the rate of global sea level rise.Conclusions In the analysis of regional sea level change, we can get the absolute sea level rise with correction of tide gauge station by GNSS. The relative sea level change corrected by GNSS is characterized by significant seasonal features in Ny-Alesund. The period of seasonal high sea level is from October to November, and the period of seasonal low sea level is from March to April. The correlation analysis between sea surface temperature and sea level shows that the sea level changes with sea surface temperature.
-
致谢: 中国北极黄河站2018年科学考察“冰川运动和物质平衡”监测组在数据采集和分析中提供了帮助,在此表示感谢。
-
表 1 新奥尔松验潮站附近的GNSS观测站
Table 1 GNSS Stations Attached to Ny-Alesund Tide Gauge Station
站点 时间序列周期/年 坐标 与验潮站距离/km 管理 NYAL 1993-2018 11.865 00°E, 78.929 44°N 1.50 挪威 NYA1 1997-2018 11.865 28°E, 78.929 44°N 1.55 挪威 NYA2 2000-2018 11.858 61°E, 78.930 28°N 1.70 挪威 NYAC 1993-2014 11.865 28°E, 78.929 44°N 1.55 挪威 CNYR 2004-2018 11.935 28°E, 78.922 50°N 0.67 中国 表 2 海平面与GNSS高程的显著周期
Table 2 Periods of Sea Level and GNSS Elevation
观测内容 显著周期/a 验潮站海平面 13.0, 6.5, 1.0, 0.5 卫星高度计海平面 12.9, 6.4, 1.0, 0.5 GNSS高程 10.8, 3.6, 1.0, 0.5 -
[1] 王慧, 刘克修, 张建立, 等. 三沙市海域海平面变化[J]. 海洋学报(中文版), 2013, 35(3): 11-17 doi: 10.3969/j.issn.0253-4193.2013.03.002 Wang Hui, Liu Kexiu, Zhang Jianli, et al. The Sea Level Change of Sansha Seas[J]. Acta Oceanologica Sinica, 2013, 35(3): 11-17 doi: 10.3969/j.issn.0253-4193.2013.03.002
[2] 袁方超, 张文舟, 杨金湘, 等. 福建近海海平面变化研究[J]. 应用海洋学学报, 2016, 35(1): 20-32 doi: 10.3969/J.ISSN.2095-4972.2016.01.003 Yuan Fangchao, Zhang Wenzhou, Yang Jinxiang, et al. Study on Sea Level Variability in off Shore Fujian[J]. Journal of Applied Oceanography, 2016, 35(1): 20-32 doi: 10.3969/J.ISSN.2095-4972.2016.01.003
[3] 时小军, 陈特固, 余克服. 近40年来珠江口的海平面变化[J]. 海洋地质与第四纪地质, 2008, 28(1): 127-134 https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200801021.htm Shi Xiaojun, Chen Tegu, Yu Kefu. Sea-Level Changes in Zhujiang Estuary over Last 40 Years[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 127-134 https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200801021.htm
[4] Pfeffer J, Allemand P. The Key Role of Vertical Land Motions in Coastal Sea Level Variations: A Global Synthesis of Multisatellite Altimetry, Tide Gauge Data and GPS Measurements[J]. Earth and Planetary Science Letters, 2016, 439: 39-47 doi: 10.1016/j.epsl.2016.01.027
[5] Trisirisatayawong I, Naeije M, Simons W, et al. Sea Level Change in the Gulf of Thailand from GPS-Corrected Tide Gauge Data and Multi-Satellite Altimetry[J]. Global and Planetary Change, 2011, 76(3/4): 137-151 http://www.sciencedirect.com/science/article/pii/S0921818110002729
[6] Fenoglio-Marc L, Schöne T, Illigner J, et al. Sea Level Change and Vertical Motion from Satellite Altimetry, Tide Gauges and GPS in the Indonesian Region[J]. Marine Geodesy, 2012, 35(sup1): 137-150 doi: 10.1080/01490419.2012.718682
[7] Bitharis S, Ampatzidis D, Pikridas C, et al. The Role of GNSS Vertical Velocities to Correct Estimates of Sea Level Rise from Tide Gauge Measurements in Greece[J]. Marine Geodesy, 2017, 40(5): 297-314 doi: 10.1080/01490419.2017.1322646
[8] Montillet J P, Melbourne T I, Szeliga W M. GPS Vertical Land Motion Corrections to Sea-Level Rise Estimates in the Pacific Northwest[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1 196-1 212 doi: 10.1002/2017JC013257
[9] Richter K, Nilsen J E Ø, Drange H. Contributions to Sea Level Variability Along the Norwegian Coast for 1960-2010[J]. Journal of Geophysical Research: Oceans, 2012, 117: C05038 doi: 10.1029/2011JC007826/pdf
[10] 刘首华, 陈长霖, 刘克修, 等. 渤黄海周边验潮站地面垂直运动速率计算[J]. 中国科学: 地球科学, 2015, 45(11): 1 737-1 746 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201511010.htm Liu Shouhua, Chen Changlin, Liu Kexiu, et al. Vertical Motions of Tide Gauge Stations near the Bohai Sea and Yellow Sea[J]. Scientia Sinica Terrae, 2015, 45(11): 1 737-1 746 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201511010.htm
[11] 黄立人, 韩月萍, 高艳龙, 等. GNSS连续站坐标的高程分量时间序列在地壳垂直运动研究中应用的若干问题[J]. 大地测量与地球动力学, 2012, 32(4): 10-14 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201204002.htm Huang Liren, Han Yueping, Gao Yanlong, et al. Several Issues in Application of Elevation Component Time Series of GNSS CORS in Vertical Crustal Movement Studying[J]. Journal of Geodesy and Geodynamics, 2012, 32(4): 10-14 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201204002.htm
[12] 陶本藻, 陈希龙. 基于模型误差补偿的AR(P)最佳建模方法[J]. 测绘通报, 2005(8): 8-10 doi: 10.3969/j.issn.0494-0911.2005.08.003 Tao Benzao, Chen Xilong. Optimal Method for AR(P) Modeling Based on Compensation for Model Errors[J]. Bulletin of Surveying and Mapping, 2005(8): 8-10 doi: 10.3969/j.issn.0494-0911.2005.08.003
[13] 武艳强, 黄立人. 时间序列处理的新插值方法[J]. 大地测量与地球动力学, 2004, 24(4): 43-47 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200404009.htm Wu Yanqiang, Huang Liren. A New Interpolation Method in Time Series Analyzing[J]. Journal of Geodesy and Geodynamics, 2004, 24(4): 43-47 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200404009.htm
[14] 周东旭, 周兴华, 张化疑, 等. 利用GPS连续观测进行中国沿海验潮站地壳垂直形变分析[J]. 武汉大学学报·信息科学版, 2016, 41(4): 516-522 doi: 10.13203/j.whugis20140714 Zhou Dongxu, Zhou Xinghua, Zhang Huayi, et al. Analysis of the Vertical Deformation of China Coastal Tide Stations Using GPS Continuous Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 516-522 doi: 10.13203/j.whugis20140714
[15] Feng S T, Bo W J, Ma Q Z, et al. Spectral Analysis for GNSS Coordinate Time Series Using Chirp Fourier Transform[J]. Acta Geophysica, 2017, 65(6): 1 111-1 118 doi: 10.1007/s11600-017-0090-1
[16] 夏华永, 李树华. 带周期项的海平面变化灰色分析模型及广西海平面变化分析[J]. 海洋学报, 1999, 21(2): 9-17 doi: 10.3321/j.issn:0253-4193.1999.02.002 Xia Huayong, Li Shuhua. A Grey Model with Periodic Term for Sea-Level Analysis and Its Application to Guangxi Coast[J]. Acta Oceanologica Sinica, 1999, 21(2): 9-17 doi: 10.3321/j.issn:0253-4193.1999.02.002
[17] 黄立人. 海面变化趋势的动态预测[J]. 海洋通报, 1991, 10(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB199101000.htm Huang Liren. Dynamical Prediction of Sea Level Change Trend[J]. Marine Science Bulletin, 1991, 10(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB199101000.htm
[18] 黄立人, 薄万举. 确定海平面长趋势变化方法的讨论[J]. 地壳形变与地震, 1992(3): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB199203005.htm Huang Liren, Bo Wanju. Discussion on the Methods of Determining the Long Term Trend in Mean Sea Level Variations[J]. Crustal Deformation and Earthquake, 1992(3): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB199203005.htm
[19] 明锋, 杨元喜, 曾安敏, 等. 顾及有色噪声的GPS位置时间序列中断探测法[J]. 武汉大学学报·信息科学版, 2016, 41(6): 745-751 doi: 10.13203/j.whugis20140603 Ming Feng, Yang Yuanxi, Zeng Anmin, et al. Offset Detection in GPS Position Time Series with Colored Noise[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 745-751 doi: 10.13203/j.whugis20140603
[20] 田云锋, 沈正康. GPS坐标时间序列中非构造噪声的剔除方法研究进展[J]. 地震学报, 2009, 31(1): 68-81 doi: 10.3321/j.issn:0253-3782.2009.01.008 Tian Yunfeng, Shen Zhengkang. Progress on Reduction of Non-Tectonic Noise in GPS Position Time Series[J]. Acta Seismologica Sinica, 2009, 31(1): 68-81 doi: 10.3321/j.issn:0253-3782.2009.01.008
[21] 韩月萍, 罗三明, 陈阜超, 等. 区域地壳垂直运动研究中的模型误差及其影响[J]. 大地测量与地球动力学, 2015, 35(1): 21-25 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201501007.htm Han Yueping, Luo Sanming, Chen Fuchao, et al. Effect of Model Error and Result of Regional Vertical Crustal Movement[J]. Journal of Geodesy and Geodynamics, 2015, 35(1): 21-25 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201501007.htm
[22] Liu B P, Li J Z, Li C Z. Crustal Deformation of the 1981 Daofu Earthquake[J]. Crustal Deformation and Earthquake, 1982, 2(4): 63-71
[23] Ming F, Yang Y X, Zeng A M, et al. Analysis of Seasonal Signals and Long-Term Trends in the Height Time Series of IGS Sites in China[J]. Science China Earth Sciences, 2016, 59(6): 1 283-1 291 doi: 10.1007/s11430-016-5285-9
[24] Jiang W P, Zhou X H. Effect of the Span of Australian GPS Coordinate Time Series in Establishing an Optimal Noise Model[J]. Science China Earth Sciences, 2015, 58(4): 523-539 doi: 10.1007/s11430-014-4996-z
[25] 金涛勇, 李建成, 王正涛, 等. 卫星测高逆气压改正及其对海平面变化的影响[J]. 武汉大学学报·信息科学版, 2010, 35(9): 1 017-1 020 http://ch.whu.edu.cn/article/id/1039 Jin Taoyong, Li Jiancheng, Wang Zhengtao, et al. Inverse Barometer Correction in Satellite Altimetry and Its Effect on Mean Sea Level Change[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1 017-1 020 http://ch.whu.edu.cn/article/id/1039