基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警

许强, 董秀军, 李为乐

许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报 ( 信息科学版), 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088
引用本文: 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报 ( 信息科学版), 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088
XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088
Citation: XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088

基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警

基金项目: 

国家创新研究群体科学基金 41521002

四川省自然资源厅重大科技支撑研究课题 KJ-2018-21

四川省科技支撑计划项目 2018SZ0339

详细信息
    作者简介:

    许强, 博士, 教授, 主要从事地质灾害防治的理论与方法研究。xq@cdut.edu.cn

  • 中图分类号: P237

Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards

Funds: 

The National Innovation Research Group Science Fund 41521002

the Major Scientific and Technological Fund of Sichuan Natural Resources Department KJ-2018-21

the Funds of Sichuan Science and Technology Support Plan 2018SZ0339

More Information
    Author Bio:

    XU Qiang, PhD, professor, specializes in the theories and methods of geological disaster prevention. E-mail: xq@cdut.edu.cn

  • 摘要: 中国地质灾害点多面广,且大多地处高位并被植被覆盖,传统的人工调查排查在一些地区进行地质灾害隐患识别已显得无能为力,这也是近年来绝大多数灾难性地质灾害事件都不在预案点范围内的主要原因。提出通过构建天-空-地一体化的“三查”体系进行重大地质灾害隐患的早期识别,再通过专业监测,在掌握地质灾害动态发展规律和特征的基础上,进行地质灾害的实时预警预报,以此破解“隐患点在哪里”“什么时候可能发生”这一地质灾害防治领域的难题和国家急切需求。“三查”体系首先通过光学遥感和合成孔径雷达干涉测量技术(interferometric synthetic aperture radar,InSAR)实现区域扫面性地质灾害隐患的普查,随后利用机载激光雷达测量技术(light laser detection and ranging,LiDAR)和无人机摄影测量实现高地质灾害风险区段和重大地质灾害隐患的详查,最后采用现场调查、地面与坡体内部监(探)测等手段,实现重大地质灾害隐患的复核确认和排除,即核查。监测预警则是通过InSAR和地面观测手段(如全球导航卫星系统、裂缝计等),在掌握滑坡崩塌的变形规律和阶段以及时间-空间变形特征的基础上,建立分级综合预警体系,并利用地质灾害实时监测预警系统,逐步实现地质灾害监测预警的实用化和业务化运行。
    Abstract: In China, traditional methodology on early detection of natural terrain to landslides is challenging as zones most prone to slope failure are usually inaccessible due to high location and dense vegetation. This can lead to underestimation of potential landslide events to the degree of wrongly identifying unstable areas as stable. This paper provides a solution for these cases by proposing an integrated space-air-ground investigation system that allows for the early detection, real-time prediction, and warning of catastrophic geohazards. Firstly, high-resolution optical images and interferometric synthetic aperture radar (InSAR) data from satellites are employed to obtain a global panorama of a region, highlighting these problematic locations; yet results are detailed enough to provide reliable estimates of deformations at particular points along time spans of days and weeks. As consequence, it makes the compilation of long displacement time-histories feasible, contributing to the understanding of long-term landslide-driving phenomena in regions where it has been underestimated. This is called the general investigation. Then, detailed assessments can be done through the deve-lopment of unmanned aerial vehicles (UAV) for elaborating high-resolution relief maps and photogrammetric representations based on both visual images and light laser detection and ranging (LiDAR) data. The system finally allows for precise tagging of locations that warrant real-time site monitoring of displacements using global navigation satellite system (GNSS) and crack gauges, validating expecting behavior of these critical, but previously hidden hazardous locations. The overall approach makes it possible to establish a four-level comprehensive early warning system, which meets the urgent needs of the country and promotes a practical and operational application of such system in the field of geohazard prevention.
  • 图  1   天-空-地一体化的多源立体观测体系与地质灾害隐患早期识别的“三查”体系

    Figure  1.   Integrated Space-Air-Ground Multi-source Monitoring System for Early Detection of Potential Geohazards

    图  2   浙江丽水苏村滑坡及其滑坡前遥感影像

    Figure  2.   Sucun Landslide in Lishui, Zhejiang and Optical Images Before Landslide Occurrence

    图  3   丹巴县五里牌滑坡及其InSAR监测结果

    (图 3(b)由武汉大学提供)

    Figure  3.   Wulipai Landslide in Danba and the InSAR Monitoring Results (Fig. 3(b) is Provided by Wuhan University)

    图  4   九寨沟景区机载LiDAR解译结果

    Figure  4.   Interpretation Results in Jiuzhaigou from Airborne LiDAR

    图  5   利用无人机DSM模型识别和发现茂县新磨村滑坡区和九寨沟震区高位地质灾害隐患

    Figure  5.   Detection and Finding of Potential Landslide in Xinmo Village and Jiuzhaigou Earthquke Area Through UAVs and DSM Model

    图  6   斋藤提出的滑坡3阶段变形曲线

    Figure  6.   Three-Stage Deformation Curve of Landslide Proposed by Saito

    图  7   基于变形观测的滑坡4级综合预警

    Figure  7.   Outline of the Four-Level Comprehensive Warning for Landslide Based on the Deformation Observation

    图  8   地质灾害实时监测预警系统

    Figure  8.   Real-Time Monitoring and Warning System of Geohazards

  • [1]

    Fruneau B, Achache J, Delacourt C. Observation and Modelling of the Saint-Étienne-de-Tinée Landslide Using SAR Interferometry[J]. Tectonophysics, 1997, 265(3-4): 181-190

    [2]

    Hilley G E. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis[J]. Science, 2004, 304(5 679): 1 952-1 955 doi: 10.1126-science.1098821/

    [3]

    Zhao C, Lu Z, Zhang Q, et al. Large-Area Landslide Detection and Monitoring with ALOS/PALSAR Imagery Data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124: 348-359 doi: 10.1016/j.rse.2012.05.025

    [4]

    Wasowski J, Bovenga F. Investigating Landslides and Unstable Slopes with Satellite Multi-temporal Interferometry: Current Issues and Future Perspectives [J]. Engineering Geology, 2014, 174(8): 103-138 http://cn.bing.com/academic/profile?id=1b81bb577743b04c6ac7cdef3fb043f0&encoded=0&v=paper_preview&mkt=zh-cn

    [5]

    Sun Q, Zhang L, Ding X L, et al. Slope Deformation Prior to Zhouqu, China Landslide from InSAR Time Series Analysis[J]. Remote Sensing of Environment, 2015, 156: 45-57 doi: 10.1016/j.rse.2014.09.029

    [6]

    Dai K, Li Z, Tomás R, et al. Monitoring Activity at the Daguangbao Mega-landslide (China) Using Sentinel-1 TOPS Time Series Interferometry[J]. Remote Sensing of Environment, 2016, 186: 501-513 doi: 10.1016/j.rse.2016.09.009

    [7] 廖明生, 王腾.时间序列InSAR技术与应用[M].北京:科学出版社, 2014

    Liao Mingsheng, Wang Teng. Time Series InSAR Technology and Its Applications [M]. Beijing: Science Press, 2014

    [8]

    Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2 202-2 212 doi: 10.1109/36.868878

    [9]

    Zhang L, Lu Z, Ding X, et al. Mapping Ground Surface Deformation Using Temporarily Coherent Point SAR Interferometry: Application to Los Angeles Basin[J]. Remote Sensing of Environment, 2012, 117: 429-439 doi: 10.1016/j.rse.2011.10.020

    [10] 廖明生, 张路, 史绪国, 等.滑坡变形雷达遥感监测方法与实践[M].北京:科学出版社, 2017

    Liao Mingsheng, Zhang Lu, Shi Xuguo, et al. Methodology and Practice of Landslide Deformation Monitoring with SAR Remote Sensing[M]. Beijing: Science Press, 2017

    [11]

    Dong J, Liao M, Xu Q, et al. Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry: A Case Study of Danba County in the Dadu River Basin[J]. Engineering Geology, 2018, 240: 95-109 doi: 10.1016/j.enggeo.2018.04.015

    [12]

    Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198 doi: 10.1016/j.rse.2017.11.022

    [13]

    Liu X, Zhao C, Zhang Q, et al. Multi-temporal Loess Landslide Inventory Mapping with C-, X- and L-Band SAR Datasets—A Case Study of Heifangtai Loess Landslides, China[J].Remote Sensing, 2018, 10(11): 1 756 http://cn.bing.com/academic/profile?id=fd4a00f413950e6b3405c7288befae35&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    Costantini M, Ferretti A, Minati F, et al. Analysis of Surface Deformations over the Whole Italian Territory by Interferometric Processing of ERS, Envisat and COSMO-SkyMed Radar Data[J].Remote Sensing of Environment, 2017, 202: 250-275 doi: 10.1016/j.rse.2017.07.017

    [15] 许强, 李为乐, 董秀军, 等.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11): 17-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002

    Xu Qiang, Li Weile, Dong Xiujun, et al. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and Failure Mechanism[J].Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 17-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002

    [16]

    Fan X, Qiang X, Scaringi G, et al. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China[J]. Landslides, 2017, 14(6): 2 129-2 146 doi: 10.1007/s10346-017-0907-7

    [17] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报, 2018, 26(6): 1 534-1 551 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806017

    Xu Qiang, Zheng Guang, Li Weile, et al. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on October 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1 534-1 551 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806017

    [18]

    Intrieri E, Raspini F, Fumagalli A, et al. The Maoxian Landslide as Seen from Space: Detecting Precursors of Failure with Sentinel-1 Data[J].Landslides, 2018, 15(1): 123-133 doi: 10.1007/s10346-017-0915-7

    [19]

    Dong J, Zhang L, Li M, et al. Measuring Precursory Movements of the Recent Xinmo Landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 Datasets[J]. Landslides, 2018, 15(1): 135-144 doi: 10.1007/s10346-017-0914-8

    [20] 许强, 汤明高, 黄润秋.大型滑坡监测预警与应急处置[M].北京:科学出版社, 2015

    Xu Qiang, Tang Minggao, Huang Runqiu. Monitoring, Early Warning and Emergency Disposal of Large Landslides[M]. Beijing: Science Press, 2015

  • 期刊类型引用(4)

    1. 朱杰,郑加柱,陈红华,杨静,胡平昌,陆敏燕. 结合POI数据的南京市商业中心识别与集聚特征研究. 现代测绘. 2022(06): 34-39 . 百度学术
    2. 金澄,安晓亚,陈占龙,马啸川. 矢量居民地多边形多级图划分聚类方法. 武汉大学学报(信息科学版). 2021(01): 19-29 . 百度学术
    3. 张铭龙,何贞铭. 基于因子分析法的城市商业中心抽取研究. 地理空间信息. 2021(08): 58-60+64+5 . 百度学术
    4. 李卫东,张铭龙,段金龙. 基于POI数据的南京市空间格局定量研究. 世界地理研究. 2020(02): 317-326 . 百度学术

    其他类型引用(3)

图(8)
计量
  • 文章访问数:  6604
  • HTML全文浏览量:  1502
  • PDF下载量:  2061
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-03-08
  • 发布日期:  2019-07-04

目录

    /

    返回文章
    返回