基于缨帽变换的农田洪水淹没范围遥感信息提取

陈超, 何新月, 傅姣琪, 褚衍丽

陈超, 何新月, 傅姣琪, 褚衍丽. 基于缨帽变换的农田洪水淹没范围遥感信息提取[J]. 武汉大学学报 ( 信息科学版), 2019, 44(10): 1560-1566. DOI: 10.13203/j.whugis20180067
引用本文: 陈超, 何新月, 傅姣琪, 褚衍丽. 基于缨帽变换的农田洪水淹没范围遥感信息提取[J]. 武汉大学学报 ( 信息科学版), 2019, 44(10): 1560-1566. DOI: 10.13203/j.whugis20180067
CHEN Chao, HE Xinyue, FU Jiaoqi, CHU Yanli. A Method of Flood Submerging Area Extraction for Farmland Based on Tasseled Cap Transformation from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1560-1566. DOI: 10.13203/j.whugis20180067
Citation: CHEN Chao, HE Xinyue, FU Jiaoqi, CHU Yanli. A Method of Flood Submerging Area Extraction for Farmland Based on Tasseled Cap Transformation from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1560-1566. DOI: 10.13203/j.whugis20180067

基于缨帽变换的农田洪水淹没范围遥感信息提取

基金项目: 

国家自然科学基金 41701447

浙江海洋大学优秀硕士论文培育项目 

浙江省省属高校科研院所基本科研业务费专项资金 2019J00003

详细信息
    作者简介:

    陈超, 博士, 讲师, 主要从事灾害遥感、遥感图像处理等相关研究。chenchao@zjou.edu.cn

    通讯作者:

    褚衍丽, 硕士, 助教。chuyanli_shandong@163.com

  • 中图分类号: P208

A Method of Flood Submerging Area Extraction for Farmland Based on Tasseled Cap Transformation from Remote Sensing Images

Funds: 

The National Natural Science Foundation of China 41701447

the Training Program of Excellent Master Thesis of Zhejiang Ocean University 

the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes 2019J00003

More Information
    Author Bio:

    CHEN Chao, PhD, lecturer, specializes in remote sensing in disasters and remote sensing image processing. E-mail: chenchao@zjou.edu.cn

    Corresponding author:

    CHU Yanli, master, assistant teacher. E-mail:chuyanli_shandong@163.com

  • 摘要: 针对灾后水中悬浮物质增多和高含水量农作物导致常规水体信息提取方法精度较低的问题,提出了一种基于缨帽变换的农田洪水淹没范围遥感信息提取方法。首先,对灾前、灾后遥感图像进行辐射定标和大气校正。其次,通过缨帽变换获取绿度分量和湿度分量;然后,利用最大类间方差法对湿度分量进行分割,结合绿度分量提取水体信息;最后,叠加农田矢量数据,确定农田洪水淹没范围。以湖南省岳阳市及其附近区域为研究区,从定性和定量两个方面对方法进行精度评价。结果表明,该方法所得结果边界清晰,范围准确,生产者精度和用户精度分别为0.97和0.90。该研究能够为农田灾损评估、洪涝灾害动态监测提供参考。
    Abstract: After the disaster, the increase of suspended matter in water and the high water content crops will lead to the low accuracy of conventional methods of water body information extraction. In response to this problem, a new method of extracting flood submerging area for farmland based on tasseled cap transformation is presented in this paper. First, the remote sensing images before and after disaster are pre-processed by radiometric calibration and atmospheric correction. Then, the tasseled cap transformation is performed based on the coefficients corresponding to the sensor to obtain the greenness component and the wetness component. Third, the wetness component is divided by the OTSU method, and combined with the greenness component to obtain the warterbody information. Finally, the spatial overlay analysis of the waterbody information and farmland vector data is carried out to extract the flood submerging area for farmland. Taking Yueyang City of Hunan Province and its vicinity as research area, the accuracy of the proposed method is evaluated both qualitatively and quantitatively to verify the validity and applicability of the method. The results shows that the boundary of flood submerging area for farmland is clear, the range is more accurate, and the producer's accuracy and the user's accuracy are 0.97 and 0.90, respectively. This paper provides references for agricultural risk evaluation and dynamic monitoring of flood disaster.
  • 图  1   技术路线图

    Figure  1.   Flowchart of Technique Route

    图  2   Landsat 8 OLI卫星遥感图(标准假彩色合成)

    Figure  2.   Pseudo-colour Composite Image by Landsat 8 OLI in Study Area

    图  3   缨帽变换后各分量

    Figure  3.   Result Images After the TCT of Landsat 8 OLI Images

    图  4   水体信息提取结果

    Figure  4.   The Resulting Images of Water Body Information

    图  5   洪水淹没范围结果图

    Figure  5.   Result Images of Flooding Area Information

    表  1   定量评价结果

    Table  1   Quantitative Evaluation for Result Images

    方法 评价指标
    PA UA OE CE
    本文方法 0.97 0.90 0.03 0.10
    NDVI 0.84 0.66 0.16 0.34
    NDWI 0.73 0.70 0.27 0.30
    MNDWI 0.88 0.66 0.12 0.34
    下载: 导出CSV
  • [1] 李加林, 曹罗丹, 浦瑞良.洪涝灾害遥感监测评估研究综述[J].水利学报, 2014, 45(3):253-260 http://d.old.wanfangdata.com.cn/Periodical/slxb201403001

    Li Jialin, Cao Luodan, Pu Ruiliang. Progresses on Monitoring and Assessment of Flood Disaster in Remote Sensing[J]. Journal of Hydraulic Engineering, 2014, 45(3):253-260 http://d.old.wanfangdata.com.cn/Periodical/slxb201403001

    [2]

    Rosser J F, Leibovici D G, Jackson M J. Rapid Flood Inundation Mapping Using Social Media, Remote Sensing and Topographic Data[J]. Natural Hazards, 2017, 87(1):103-120 doi: 10.1007/s11069-017-2755-0

    [3] 李斌, 燕琴, 张丽, 等.长江中游洪涝灾害特征的MODIS时序监测与分析[J].武汉大学学报·信息科学版, 2013, 38(7):789-793 http://ch.whu.edu.cn/CN/abstract/abstract2691.shtml

    Li Bin, Yan Qin, Zhang Li, et al. Flood Monitoring and Analysis over the Middle Reaches of Yangtze River Basin with MODIS Time-Series Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):789-793 http://ch.whu.edu.cn/CN/abstract/abstract2691.shtml

    [4] 陈颖姝, 张晓春, 王修贵, 等.基于Landsat 8 OLI与MODIS数据的洪涝季节作物种植结构提取[J].农业工程学报, 2014, 30(21):165-173 doi: 10.3969/j.issn.1002-6819.2014.21.020

    Chen Yingshu, Zhang Xiaochun, Wang Xiugui, et al. Extraction of Crop Planting Structure in Seasons Prone to Waterlogging Using Landsat 8 OLI and MODIS Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21):165-173 doi: 10.3969/j.issn.1002-6819.2014.21.020

    [5] 刘良明, 徐琪, 周正, 等.利用HJ-1A/1B CCD数据进行黄河凌汛监测[J].武汉大学学报·信息科学版, 2012, 37(2):141-144 http://ch.whu.edu.cn/CN/abstract/abstract108.shtml

    Liu Liangming, Xu Qi, Zhou Zheng, et al. Ice Flood Monitoring of Yellow River Using HJ-1A/1B CCD Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2):141-144 http://ch.whu.edu.cn/CN/abstract/abstract108.shtml

    [6] 李德仁, 陈晓玲, 蔡晓斌.空间信息技术用于汶川地震救灾[J].遥感学报, 2008, 12(6):841-851 http://d.old.wanfangdata.com.cn/Periodical/ygxb200806004

    Li Deren, Chen Xiaoling, Cai Xiaobin. Spatial Information Techniques in Rapid Response to Wenchuan Earthquake[J]. Journal of Remote Sensing, 2008, 12(6):841-851 http://d.old.wanfangdata.com.cn/Periodical/ygxb200806004

    [7] 陈述彭, 童庆禧, 郭华东.遥感信息机理研究[M].北京:科学出版社, 1998

    Chen Shupeng, Tong Qingxi, Guo Huadong. Mechanism of Remote Sensing Information[M]. Beijing:Chinese Science Publishing & Media Ltd, 1998

    [8] 李德仁, 沈欣, 龚健雅, 等.论我国空间信息网络的构建[J].武汉大学学报·信息科学版, 2015, 40(6):711-715 http://ch.whu.edu.cn/CN/abstract/abstract3264.shtml

    Li Deren, Shen Xin, Gong Jianya, et al. On Construction of China's Space Information Network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):711-715 http://ch.whu.edu.cn/CN/abstract/abstract3264.shtml

    [9] 李德仁, 马军, 邵振峰.论地理国情普查和监测的创新[J].武汉大学学报·信息科学版, 2018, 43(1):1-9 http://ch.whu.edu.cn/CN/abstract/abstract5939.shtml

    Li Deren, Ma Jun, Shao Zhenfeng. Innovation in the Census and Monitoring of Geographical National Conditions[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1):1-9 http://ch.whu.edu.cn/CN/abstract/abstract5939.shtml

    [10] 杨树文, 李轶鲲, 刘涛, 等.基于SPOT5影像自动提取水体的新方法[J].武汉大学学报·信息科学版, 2015, 40(3):308-314 http://ch.whu.edu.cn/CN/abstract/abstract3202.shtml

    Yang Shuwen, Li Yikun, Liu Tao, et al. A New Automatic Water Body Feature Extraction Method Based on SPOT5 Images[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3):308-314 http://ch.whu.edu.cn/CN/abstract/abstract3202.shtml

    [11] 睢海刚, 陈光, 胡传文, 等.光学遥感影像与GIS数据一体化的水体分割、配准与提取方法[J].武汉大学学报·信息科学版, 2016, 41(9):1145-1150 http://ch.whu.edu.cn/CN/abstract/abstract5521.shtml

    Sui Haigang, Chen Gugang, Hu Chuanwen, et al. Integrated Segmentation, Registration and Extraction Method for Water-Body Using Optical Remote Sensing Images and GIS Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9):1145-1150 http://ch.whu.edu.cn/CN/abstract/abstract5521.shtml

    [12]

    Chen C, Fu J, Zhang S, et al. Coastline Information Extraction Based on the Tasseled Cap Transformation of Landsat-8 OLI Images[J]. Estuarine, Coastal and Shelf Science, 2019, 217:281-291 doi: 10.1016/j.ecss.2018.10.021

    [13]

    Zhao X, Wang P, Chen C, et al. Waterbody Information Extraction from Remote-Sensing Images After Disasters Based on Spectral Information and Characteristic Knowledge[J]. International Journal of Remote Sensing, 2017, 38(5):1404-1422 doi: 10.1080/01431161.2016.1278284

    [14]

    McFeeters S K. The Use of Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432 doi: 10.1080/01431169608948714

    [15]

    Xu H. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery[J]. International Journal of Remote Sensing, 2006, 27(14):3025-3033 doi: 10.1080/01431160600589179

    [16]

    Ji L, Zhang L, Wylie B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index[J]. Photogrammetric Engineering & Remote Sensing, 2009, 75(11):1307-1317 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=affef170639d1083784c1220a616c794

    [17]

    Crist E P. A TM Tasseled Cap Equivalent Transformation for Reflectance Factor Data[J]. Remote Sensing of Environment, 1985, 17(3):301-306 doi: 10.1016/0034-4257(85)90102-6

    [18]

    Crist E P, Kauth R J. The Tasseled Cap De-mystified[J]. Photogrammetric Engineering and Remote Sensing, 1986, 52(1):81-86

    [19]

    Liu Q, Liu G, Huang C, et al. Comparison of Tasseled Cap Transformations Based on the Selective Bands of Landsat 8 OLI TOA Reflectance Images[J]. International Journal of Remote Sensing, 2015, 36(2):417-441 doi: 10.1080/01431161.2014.995274

    [20]

    Chen C, Qin Q, Zhang N, et al. Extraction of Bridges over Water from High-Resolution Optical Remote-Sensing Images Based on Mathematical Morphology[J]. International Journal of Remote Sensing, 2014, 35(10):3664-3682 doi: 10.1080/01431161.2014.915437

    [21]

    Chen C, Sui X, Zhen G, et al. Extraction of Cross-sea Bridges from GF-2 PMS Satellite Images Using Mathematical Morphology[C]. IOP Conference Series: Earth and Environmental Science, Beijing, China, 2016

    [22]

    Chen C, Qin Q, Chen L, et al. Photometric Correction and Reflectance Calculation for Lunar Images from the Chang'E-1 CCD Stereo Camera[J]. JOSA A, 2015, 32(12):2409-2422 doi: 10.1364/JOSAA.32.002409

    [23]

    Fu J, Chen C, Chu Y. Spatial-Temporal Variations of Oceanographic Parameters in the Zhoushan Sea Area of the East China Sea Based on Remote Sensing Datasets[J]. Regional Studies in Marine Science, 2019, 28:100626 doi: 10.1016/j.rsma.2019.100626

  • 期刊类型引用(12)

    1. 徐燕飞,胡振琪,陈永春,崔瑞豪,苗伟,冯占杰. 基于遥感生态指数的淮南矿区生态环境质量变化分析. 煤炭工程. 2025(01): 195-202 . 百度学术
    2. 张浩斌,王婉,宋妤婧,苗林光,马超. 基于改进遥感生态指数的干旱内流区生态质量评价——以阴山北麓塔布河流域为例. 生态学报. 2024(02): 523-543 . 百度学术
    3. 张昊杰,杨立娟,施婷婷,王帅. GF-6 WFV传感器数据的缨帽变换系数推导. 自然资源遥感. 2024(02): 105-115 . 百度学术
    4. 钟安亚,孙娟,胡春明,谷海红. 基于RSEI的北京王平煤矿生态环境修复效果评估及预测. 矿业安全与环保. 2023(04): 89-96 . 百度学术
    5. 王新驰,鲁铁定,龚循强,周秀芳. 基于改进遥感生态指数的南昌市生态环境质量监测与评价. 科学技术与工程. 2023(35): 15319-15327 . 百度学术
    6. 吴群英,苗彦平,陈秋计,侯恩科,李继业. 基于Sentinel-2的荒漠化矿区生态环境监测. 采矿与岩层控制工程学报. 2022(01): 91-98 . 百度学术
    7. 晏红波,杨志高,卢献健,韦晚秋,黎振宝. 基于改进RSEDI的典型喀斯特地区生态环境质量时空变化. 科学技术与工程. 2022(11): 4646-4653 . 百度学术
    8. 刘建强,叶小敏,陈鋆. 面向鄱阳湖洪涝风险分析的HY-1C/D卫星CZI影像水体面积与水位关系研究. 华中师范大学学报(自然科学版). 2022(03): 505-512 . 百度学术
    9. 史宇骁,李阳,孟翊,赵志远,张婷玉,王栋,袁琳. 1989—2020年长江口九段沙湿地格局演变及影响因素. 应用生态学报. 2022(08): 2229-2236 . 百度学术
    10. 梁齐云,苏涛,张灿,王建,周丽丽. 基于改进遥感生态指数的黄山市生态质量评价研究. 地球物理学进展. 2022(04): 1448-1456 . 百度学术
    11. 程琳琳,王振威,田素锋,柳亚彤,孙梦尧,杨玉曼. 基于改进的遥感生态指数的北京市门头沟区生态环境质量评价. 生态学杂志. 2021(04): 1177-1185 . 百度学术
    12. 陈超,陈慧欣,陈东,张自力,张旭锋,庄悦,褚衍丽,陈建裕,郑红. 舟山群岛海岸线遥感信息提取及时空演变分析. 国土资源遥感. 2021(02): 141-152 . 百度学术

    其他类型引用(21)

图(5)  /  表(1)
计量
  • 文章访问数:  1795
  • HTML全文浏览量:  266
  • PDF下载量:  203
  • 被引次数: 33
出版历程
  • 收稿日期:  2018-07-11
  • 发布日期:  2019-10-04

目录

    /

    返回文章
    返回