融合多种棋盘格约束的面阵相机和线激光外参标定

祝飞, 范佳, 黄玉春, 刘洋洋

祝飞, 范佳, 黄玉春, 刘洋洋. 融合多种棋盘格约束的面阵相机和线激光外参标定[J]. 武汉大学学报 ( 信息科学版), 2019, 44(10): 1524-1529, 1537. DOI: 10.13203/j.whugis20180022
引用本文: 祝飞, 范佳, 黄玉春, 刘洋洋. 融合多种棋盘格约束的面阵相机和线激光外参标定[J]. 武汉大学学报 ( 信息科学版), 2019, 44(10): 1524-1529, 1537. DOI: 10.13203/j.whugis20180022
ZHU Fei, FAN Jia, HUANG Yuchun, LIU Yangyang. Extrinsic Calibration of Camera and 2D Laser-Rangefinder with Various Chessboard Constrains[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1524-1529, 1537. DOI: 10.13203/j.whugis20180022
Citation: ZHU Fei, FAN Jia, HUANG Yuchun, LIU Yangyang. Extrinsic Calibration of Camera and 2D Laser-Rangefinder with Various Chessboard Constrains[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1524-1529, 1537. DOI: 10.13203/j.whugis20180022

融合多种棋盘格约束的面阵相机和线激光外参标定

基金项目: 

国家自然科学基金 41671419

国家自然科学基金 51208392

国家863计划 2015AA124001

武汉大学学科交叉项目 2042017kf0204

地球空间国家协同创新中心 2042017KF0235

详细信息
    作者简介:

    祝飞, 硕士生, 主要从事传感器检校和移动测量的研究。f_zhuwhu@whu.edu.cn

    通讯作者:

    黄玉春, 博士, 副教授。hycwhu@whu.edu.cn

  • 中图分类号: P237

Extrinsic Calibration of Camera and 2D Laser-Rangefinder with Various Chessboard Constrains

Funds: 

The National Natural Science Foundation of China 41671419

The National Natural Science Foundation of China 51208392

the National 863 Plan Project 2015AA124001

Wuhan University Cross Disciplinary Project 2042017kf0204

the National Geospatial Collaborative Innovation Center 2042017KF0235

More Information
    Author Bio:

    ZHU Fei, postgraduate, specializes in sensor calibration and mobile mapping. E-mail: f_zhuwhu@whu.edu.cn

    Corresponding author:

    HUANG Yuchun, PhD, associate professor. E-mail: hycwhu@whu.edu.cn

  • 摘要: 面阵相机和线激光扫描仪的组合在移动测量、自动驾驶、机器人等领域中得到了广泛应用。影像纹理和激光深度数据融合的首要问题是两种传感器的外参标定。对此,提出了一种融合多种约束条件的相机和线激光外参标定算法。该算法建立激光扫描线与V型棋盘平面间的点-面、线-面、点-线等多种约束求解和优化激光与相机间的外参,减少了激光点和像点噪声对结果的影响。实验结果表明,该算法相较于之前的算法有更高的精度和鲁棒性。并通过计算激光交点到V型棋盘面交线的距离,提出了定量评价激光与相机外参精度的标准。
    Abstract: The combination of camera and 2D laser-rangefinder has been widely used in the fields of surveying, pilotless and robot. Extrinsic calibration between the two sensors is a prerequisite for fusing the texture information from images and depth information from the laser. To tackle this problem, a method of calibrating the extrinsic parameters between a camera and a 2D laser-rangefinder is proposed. This method establishes three geometric constraints between the laser scanning line and the V-shaped chessboard plane, including point to plane constraint, line to plane constrain and point to line constraint. The extrinsic parameters can be solved and optimized by redundant geometric constrains which help mitigate the impacts of noises in the laser points and image data. Experiments show that the proposed algorithm achieves higher accuracy and robustness than previous methods. And a quantitative evaluation criteria of the extrinsic parameters is proposed by calculating the distance between the intersecting point of the laser lines and the V-shaped chessboard line.
  • 图  1   面阵相机和线激光外参标定示意图

    Figure  1.   Extrinsic Calibration of Camera and Laser

    图  2   V型棋盘约束示意图

    Figure  2.   Schematic Diagram of the Constrains in V-shaped Chessboard

    图  3   不同激光噪声水平下外参标定误差

    Figure  3.   Calibration Errors at Different Laser Noise Levels

    图  4   不同像点噪声水平下外参标定误差

    Figure  4.   Calibration Errors at Different Image Noise Levels

    图  5   激光点反投影结果图

    Figure  5.   Results of Projecting Laser Points to Image

  • [1] 龚健雅, 季顺平.从摄影测量到计算机视觉[J].武汉大学学报·信息科学版, 2017, 42(11):1518-1522, 1615 http://ch.whu.edu.cn/CN/abstract/abstract5865.shtml

    Gong Jianya, Ji Shunping. From Photogrammetry to Computer Vision[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1518-1522, 1615 http://ch.whu.edu.cn/CN/abstract/abstract5865.shtml

    [2]

    Pereira M, Silva D, Santos V, et al. Self Calibration of Multiple LiDARs and Cameras on Autonomous Vehicles[J]. Robotics and Autonomous Systems, 2016, 83:326-337 doi: 10.1016/j.robot.2016.05.010

    [3]

    Pradeep V, Konolige K, Berger E. Calibrating a Multi-arm Multi-sensor Robot: A Bundle Adjustment Approach[C]//Experimental Robotics. Berlin, Heidelberg: Springer, 2014 doi: 10.1007%2F978-3-642-28572-1_15

    [4]

    Pandey G, McBride J R, Savarese S, et al. Automatic Extrinsic Calibration of Vision and LiDAR by Maximizing Mutual Information[J]. Journal of Field Robotics, 2015, 32(5):696-722 doi: 10.1002/rob.21542

    [5]

    Bok Y, Choi D G, Kweon I S. Extrinsic Calibration of a Camera and a 2D Laser Without Overlap[J]. Robotics and Autonomous Systems, 2016, 78:17-28 doi: 10.1016/j.robot.2015.12.007

    [6]

    Lv Y, Feng J, Li Z, et al. A New Robust 2D Camera Calibration Method Using RANSAC[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(24):4910-4915 doi: 10.1016/j.ijleo.2015.09.117

    [7]

    Hong Y, Ren G, Liu E. Non-iterative Method for Camera Calibration[J]. Optics Express, 2015, 23(18):23992-24003 doi: 10.1364/OE.23.023992

    [8]

    Zhang Q, Pless R. Extrinsic Calibration of a Camera and Laser Range Finder (Improves Camera Calibration)[C]. International Conference on Intelligent Robots and Systems, Sendai, Japan, 2005 https://ieeexplore.ieee.org/document/1389752/

    [9]

    Zhou L, Deng Z. A New Algorithm for Computing the Projection Matrix Between a LiDAR and a Camera Based on Line Correspondences[C]. International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Petersburg, Russia, 2012 https://ieeexplore.ieee.org/document/6459706

    [10]

    Ying X, Wang G, Mei X, et al. A Direct Method for the Extrinsic Calibration of a Camera and a Line Scan LiDAR[C]. Mechatronics and Automation (ICMA), Tianjin, China, 2014 https://ieeexplore.ieee.org/document/6885760

    [11]

    Vasconcelos F, Barreto J P, Nunes U. A Minimal Solution for the Extrinsic Calibration of a Camera and a Laser-Rangefinder[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11):2097-2107 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56097b3958997ae4236570900fd18824

    [12] 胡钊政, 赵斌, 李娜, 等.基于虚拟三面体的摄像机与二维激光测距仪外参数最小解标定新算法[J].自动化学报, 2015, 41(11):1951-1960 http://d.old.wanfangdata.com.cn/Periodical/zdhxb201511011

    Hu Zhaozheng, Zhao Bin, Li Na, et al. Minimal Solution to Extrinsic Calibration of Camera and 2D Laser Rangefinder Based on Virtual Trihedron[J]. Automation Journal, 2015, 41(11):1951-1960 http://d.old.wanfangdata.com.cn/Periodical/zdhxb201511011

    [13]

    Wang P, Xu G, Wang Z, et al. An Efficient Solution to the Perspective-Three-Point Pose Problem[J]. Computer Vision and Image Understanding, 2018, 166:81-87 doi: 10.1016/j.cviu.2017.10.005

    [14]

    Li G, Liu Y, Dong L, et al. An Algorithm for Extrinsic Parameters Calibration of a Camera and a Laser Range Finder Using Line Features[C]. Intelligent Robots and Systems, California, USA, 2007 https://ieeexplore.ieee.org/document/4399041

    [15]

    Wasielewski S, Strauss O. Calibration of a Multi-sensor System Laser Rangefinder Camera[C]. Intelligent Vehicles'95 Symposium, Detroit, USA, 1995 https://ieeexplore.ieee.org/document/528327

    [16]

    Sim S, Sock J, Kwak K. Indirect Correspondence-based Robust Extrinsic Calibration of LiDAR and Camera[J]. Sensors, 2016, 16(6):933 doi: 10.3390/s16060933

    [17]

    Zhang Z. A Flexible New Technique for Camera Calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334 doi: 10.1109/34.888718

    [18]

    Levenberg K. A Method for the Solution of Certain Non-linear Problems in Least Squares[J]. Journal of Heart & Lung Transplantation the Official Publication of the International Society for Heart Transplantation, 1944, 31(4):436-438 http://cn.bing.com/academic/profile?id=21e9afdf1af1cf572c76436361f889ee&encoded=0&v=paper_preview&mkt=zh-cn

  • 期刊类型引用(11)

    1. 赵涛,叶世榕,罗歆琪,夏朋飞. GNSS-IR潮位反演中高仰角数据质量控制方法. 武汉大学学报(信息科学版). 2024(01): 68-76 . 百度学术
    2. 肖倩雨,周春霞,刘勇. 利用改进的亮温日较差法探测格陵兰冰盖表面融化. 武汉大学学报(信息科学版). 2024(10): 1931-1939 . 百度学术
    3. 李荣兴,何美茜,葛绍仓,程远,安璐. 东南极历史冰流速过估改正. 武汉大学学报(信息科学版). 2023(10): 1661-1669 . 百度学术
    4. 张冕,张春灌,赵敏,钟振华,袁炳强,周磊,韩梅. 地球磁异常EMAG2v3与全球重力数据库V29数据质量综合评估——以北极地区Aegir脊为例. 物探与化探. 2023(06): 1410-1416 . 百度学术
    5. 张金辉,李姗姗,杨光,范雕,凌晴. 联合CTD、海底地形和ARGO数据构建北太平洋深海时变温度模型. 测绘通报. 2023(12): 94-101+126 . 百度学术
    6. 徐天河,穆大鹏,闫昊明,郭金运,尹鹏. 近20年海平面变化成因研究进展及挑战. 测绘学报. 2022(07): 1294-1305 . 百度学术
    7. 徐天河,杨元元,穆大鹏,尹鹏. 近海海平面变化成因分析. 武汉大学学报(信息科学版). 2022(10): 1750-1757 . 百度学术
    8. 陈旭升,张云龙,张冠军. 优化局部均值分解在趋势信息提取中的应用. 测绘科学. 2022(11): 32-39 . 百度学术
    9. 房婷婷,付广裕. 卫星重力与地球重力场的文献计量分析. 地球科学进展. 2021(05): 543-552 . 百度学术
    10. 冯哲颖,岳林蔚,沈焕锋. 基于多源水文数据融合的GRACE水储量精度校正. 遥感技术与应用. 2021(03): 605-617 . 百度学术
    11. 刘冰石,邹贤才. ENSO影响下的西太平洋地区海陆水储量变化分析. 武汉大学学报(信息科学版). 2019(09): 1296-1303 . 百度学术

    其他类型引用(11)

图(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 22
出版历程
  • 收稿日期:  2018-09-03
  • 发布日期:  2019-10-04

目录

    /

    返回文章
    返回