利用可分离非负矩阵分解实现高光谱波段选择

杨刚, 孙伟伟, 张殿发

杨刚, 孙伟伟, 张殿发. 利用可分离非负矩阵分解实现高光谱波段选择[J]. 武汉大学学报 ( 信息科学版), 2019, 44(5): 737-744. DOI: 10.13203/j.whugis20170174
引用本文: 杨刚, 孙伟伟, 张殿发. 利用可分离非负矩阵分解实现高光谱波段选择[J]. 武汉大学学报 ( 信息科学版), 2019, 44(5): 737-744. DOI: 10.13203/j.whugis20170174
YANG Gang, SUN Weiwei, ZHANG Dianfa. Separable Nonnegative Matrix Factorization Based Band Selection for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 737-744. DOI: 10.13203/j.whugis20170174
Citation: YANG Gang, SUN Weiwei, ZHANG Dianfa. Separable Nonnegative Matrix Factorization Based Band Selection for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 737-744. DOI: 10.13203/j.whugis20170174

利用可分离非负矩阵分解实现高光谱波段选择

基金项目: 

国家自然科学基金 41671342

国家自然科学基金 41801256

浙江省自然科学基金 LR19D010001

浙江省自然科学基金 LQ18D010001

地球观测与时空信息科学国家测绘地理信息局重点实验室开放基金 201804

测绘遥感信息工程国家重点实验室开放基金 18R05

详细信息
    作者简介:

    杨刚, 博士, 讲师, 从事遥感影像数据质量改善与信息提取理论和方法、遥感滨海健康监测技术与应用研究。yanggang@nbu.edu.cn

    通讯作者:

    孙伟伟, 博士, 副教授。sunweiwei@nbu.edu.cn

  • 中图分类号: P237;TP751

Separable Nonnegative Matrix Factorization Based Band Selection for Hyperspectral Imagery

Funds: 

National Natural Science Foundation of China 41671342

National Natural Science Foundation of China 41801256

Natural Science Foundation of Zhejiang Province LR19D010001

Natural Science Foundation of Zhejiang Province LQ18D010001

Open Fund of Key Laboratory of Earth Observation and Geospatial Information Science of NASG 201804

Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University 18R05

More Information
    Author Bio:

    YANG Gang, PhD, lecturer, specializes in quality improvement of remote sensing and information extraction, and coastal health monitoring techniques and application of remote sensing. E-mail: yanggang@nbu.edu.cn

    Corresponding author:

    SUN Weiwei, PhD, associate professor. E-mail: sunweiwei@nbu.edu.cn

  • 摘要: 高光谱影像波段众多且相关性强,导致分类存在信息冗余且计算量较大。提出了可分离非负矩阵分解方法来选取高光谱影像的代表性波段子集,在保证分类精度的同时降低计算量。该方法假设高光谱影像的波段集合具有可分离特性,改进传统非负矩阵分解模型,将波段选择转换为可分离非负矩阵分解问题,采用迭代投影方法来依次选取能够非负线性表达其他波段的代表性波段。在此基础上,利用两个公开高光谱数据集对比几种主流方法,采用定量评价和分类精度指标来综合评价所提的波段选择方法的效果。实验结果表明,可分离非负矩阵分解方法的分类精度高于其他几种方法,而且计算效率排名第2,能够选取合适的波段子集以满足高光谱遥感的应用需求。
    Abstract: Strong intra-band correlations along with numerous bands seriously hinder the processing and applications of hyperspectral remote sensing images in realistic applications. A separable non-negative matrix factorization (SepNMF) method is presented to explore the band selection problem on hyperspectral imagery (HSI). The method investigates the separability structure in the band set of the HSI data to improve the regular non-negative matrix factorization model, and it formulates the band selection problem into the problem of finding representative columns that represent other bands with non-negative and linear combinations in the SepNMF model. The method adopts the recursive projection method to iteratively select the representative bands to constitute the proper band subset. Three groups of experiments on two open HSI data sets are designed to carefully testify the performance of the SepNMF in band selection. Several popular methods are utilized to compare against the proposed SepNMF method. Experimental results show that the SepNMF obtains the best overall classification accuracies of all while taking shorter computational times ranking second among all the comparison methods. Therefore, the SepNMF method can be an alternative choice for selecting proper bands in hyperspectral image classification.
  • 图  1   SepNMF用于波段选择的流程

    Figure  1.   Process of SepNMF for Band Selection

    图  2   印第安纳派恩斯市影像

    Figure  2.   Image of Indian Pines Data

    图  3   某城市影像

    Figure  3.   Image of Urban Data

    图  4   不同方法的OCA曲线

    Figure  4.   OCA Curves of Different Band Selection Methods on Two Datasets

    图  5   不同波段选择方法的派恩斯市数据的SVM分类结果

    Figure  5.   SVM Classification Maps of Different Band Selection Methods on Indian Pines Dataset

    图  6   不同波段选择方法的某城市数据的SVM分类结果

    Figure  6.   SVM Classification Maps of Different BandSelection Methods on Urban Dataset

    图  7   不同训练样本大小下的各种波段选择方法的OCA曲线

    Figure  7.   OCA Curves of Different Band Selection Methods with Different Sizes of Training Samples per Class

    表  1   印第安纳派恩斯市数据的地面地物样本信息

    Table  1   Ground Truth of All Classes of Ground Objects on Indian Pines Dataset

    类号 类名 样本数
    1 苜蓿 46
    2 非耕犁玉米 1 428
    3 玉米幼苗 830
    4 玉米 237
    5 草地/牧场 483
    6 草地/树木 730
    7 收割的草地/牧场 28
    8 打包的干草 478
    9 燕麦 20
    10 非耕犁大豆 972
    11 大豆幼苗 2 455
    12 清洁的大豆 593
    13 小麦 205
    14 树林 1 265
    15 建筑物-草地-树木驱动器 386
    16 石铁塔 93
    样本总数 10 249
    下载: 导出CSV

    表  2   某城市数据的地面地物样本信息

    Table  2   Samples of Ground Objects in Each Class for Urban Dataset

    类号 类名 样本数
    1 深色沥青 85
    2 浅色沥青 58
    3 混凝土01 124
    4 牧草 236
    5 草地 127
    6 树木01 263
    7 土壤01 113
    8 土壤02 53
    9 深色土壤03 59
    10 墙面屋顶01 118
    11 屋顶02A 91
    12 屋顶02B 39
    13 浅灰屋顶03 35
    14 深色琉璃屋顶04 84
    15 教堂屋顶05A 85
    16 学校屋顶06 64
    17 明亮屋顶07 72
    18 蓝绿屋顶08 45
    19 网球场 96
    20 阴影植被 40
    21 阴影地面 64
    22 树木02 261
    样本总数 2 212
    下载: 导出CSV

    表  3   不同波段选择方法的定量评价结果

    Table  3   Results of Quantitative Evaluations from Different Methods on Two Datasets

    数据 评价因子 MVPCA SpaBS SNMF FDPC SepNMF
    印第安纳派恩斯市 AIE 10.635 10.434 10.584 10.993 11.478
    ACC 0.606 0.576 0.226 0.320 0.201
    ARE 14.828 18.161 19.552 32.184 30.810
    某城市 AIE 7.702 7.521 7.438 7.296 7.997
    ACC 0.841 0.904 0.664 0.738 0.562
    ARE 1.007 1.422 16.356 16.217 17.606
    下载: 导出CSV

    表  4   不同波段选择方法的计算时间对比

    Table  4   Contrast in Computational Time of Different Methods on Two Hyperspectral Datasets

    影像 k 计算时间/s
    MVPCA SpaBS SNMF FDPC SepNMF
    印第安纳派恩斯市 10 0.062 90.72 2.28 3.45 0.07
    20 0.062 97.24 3.09 3.56 0.12
    30 0.063 101.13 5.78 3.64 0.19
    40 0.063 106.89 6.56 3.76 0.28
    50 0.063 112.19 15.24 3.84 0.41
    某城市 10 0.161 742.32 12.579 3.37 0.16
    20 0.171 1013.57 21.35 3.37 0.28
    30 0.182 1377.42 51.77 3.41 0.43
    40 0.187 1423.55 135.06 3.51 0.61
    50 0.194 1513.20 291.75 3.75 0.84
    下载: 导出CSV
  • [1] 童庆禧, 张兵, 张立福.中国高光谱遥感的前沿进展[J].遥感学报, 2016, 20(5):689-707 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605002

    Tong Qingxi, Zhang Bing, Zhang Lifu.Current Progress of Hyperspectral Remote Sensing in China[J].Journal of Remote Sensing, 2016, 20(5):689-707 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605002

    [2] 张良培, 李家艺.高光谱图像稀疏信息处理综述与展望[J].遥感学报, 2016, 20(5):1091-1101 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605032

    Zhang Liangpei, Li Jiayi.Development and Prospect of Sparse Representation-based Hyperspectral Image Processing and Analysis[J].Journal of Remote Sensing, 2016, 20(5):1091-1101 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605032

    [3] 张兵.高光谱图像处理与信息提取前沿[J].遥感学报, 2016, 20(5):1062-1090 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605031

    Zhang Bing.Advancement of Hyperspectral Image Processing and Information Extraction[J].Journal of Remote Sensing, 2016, 20(5):1062-1090 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605031

    [4] 刘帅, 朱亚杰, 薛磊.一种结合稀疏表示和纹理分块的遥感影像超分辨率方法[J].武汉大学学报∙信息科学版, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml

    Liu Shuai, Zhu Yajie, Xue Lei.Remote Sensing Image Super-Resolution Method Using Sparse Representation and Classified Texture Patches[J].Geomatics and Information Science of Wuhan University, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml

    [5] 黄远程, 钟燕飞, 赵野鹤, 等.联合盲分解与稀疏表达的高光谱图像异常目标检测[J].武汉大学学报∙信息科学版, 2015, 40(9):1144-1150 http://ch.whu.edu.cn/CN/abstract/abstract3312.shtml

    Huang Yuancheng, Zhong Yanfei, Zhao Yehe, et al.Joint Blind Unmixing and Sparse Representation for Anomaly Detection in Hyperspectral Image[J].Geomatics and Information Science of Wuhan University, 2015, 40(9):1144-1150 http://ch.whu.edu.cn/CN/abstract/abstract3312.shtml

    [6]

    Sun W, Zhang L, Du B, et al.Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2784-2797 doi: 10.1109/JSTARS.2015.2417156

    [7]

    Pal M, Foody G M.Feature Selection for Classification of Hyperspectral Data by SVM[J].IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5):2297-2307 doi: 10.1109/TGRS.2009.2039484

    [8]

    Sun W W, Zhang L P, Zhang L F, et al.A Dissimilarity-Weighted Sparse Self-Representation Method for Band Selection in Hyperspectral Imagery Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9):1-15 doi: 10.1109/JSTARS.2016.2610587

    [9]

    Chang C I, Du Q, Sun T L, et al.A Joint Band Prioritization and Band-Decorrelation Approach to Band Selection for Hyperspectral Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6):2631-2641 doi: 10.1109/36.803411

    [10]

    Chang C I, Wang S.Constrained Band Selection for Hyperspectral Imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6):1575-1585 doi: 10.1109/TGRS.2006.864389

    [11]

    Martínez-Usómartinez-Uso A, Pla F, Sotoca J M, et al.Clustering-Based Hyperspectral Band Selection Using Information Measures[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12):4158-4171 doi: 10.1109/TGRS.2007.904951

    [12]

    Qian Y, Yao F, Jia S.Band Selection for Hyperspectral Imagery Using Affinity Propagation[J].IET Computer Vision, 2009, 3(4):213-222 doi: 10.1049/iet-cvi.2009.0034

    [13]

    Du Q, Yang H.Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis[J].IEEE Geoscience & Remote Sensing Letters, 2008, 5(4):564-568 http://cn.bing.com/academic/profile?id=24b44d39933248806cfd30f829bc9a91&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    Su H, Du Q, Chen G, et al.Optimized Hyperspectral Band Selection Using Particle Swarm Optimization[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2659-2670 doi: 10.1109/JSTARS.2014.2312539

    [15]

    Li J M, Qian Y T.Clustering-Based Hyperspectral Band Selection Using Sparse Nonnegative Matrix Factorization[J].Journal of Zhejiang University SCIENCE C, 2011, 12(7):542-549 doi: 10.1631/jzus.C1000304

    [16]

    Chepushtanova S, Gittins C, Kirby M.Band Selection in Hyperspectral Imagery Using Sparse Support Vector Machines[C].SPIE Conference in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Baltimore, Maryland, USA, 2014

    [17]

    Yuan Y, Zhu G, Wang Q.Hyperspectral Band Selection by Multitask Sparsity Pursuit[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):631-644 doi: 10.1109/TGRS.2014.2326655

    [18]

    Feng Y, Yuan Y, Lu X.A Non-negative Low-rank Representation for Hyperspectral Band Selection[J].International Journal of Remote Sensing, 2016, 37(19):4590-4609 doi: 10.1080/01431161.2016.1214299

    [19]

    Sun W, Li W, Li J, et al.Band Selection Using Sparse Nonnegative Matrix Factorization with the Thresholded Earth's Mover Distance for Hyperspectral Imagery Classification[J].Earth Science Informatics, 2015, 8(4):907-918 doi: 10.1007/s12145-014-0201-3

    [20]

    Lu X, Wu H, Yuan Y, et al.Manifold Regularized Sparse NMF for Hyperspectral Unmixing[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2815-2826 doi: 10.1109/TGRS.2012.2213825

    [21]

    Donoho D L, Stodden V.When Does Non-negative Matrix Factorization Give a Correct Decomposition into Parts?[C].The 2003 Conference in Advances in Neural Information Processing Systems, Whistler, British Columbia, Canada, 2003

    [22]

    Gillis N.Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices[J].SIAM Journal on Matrix Analysis and Applications, 2013, 34(3):1189-1212 doi: 10.1137/120900629

    [23]

    Kumar A, Sindhwani V, Kambadur P.Fast Conical Hull Algorithms for Near-Separable Non-negative Matrix Factorization[C].The 30th International Conference on Machine Learning, Atlanta, USA, 2013

    [24]

    Gillis N, Vavasis S A.Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4):698-714 doi: 10.1109/TPAMI.2013.226

    [25]

    Li Shuangjiang, Qi Hairong.Sparse Representation Based Band Selection for Hyperspectral Images[C].The 18th IEEE International Conference on Image Processing, Brussels, Belgium, 2011

    [26]

    Jia S, Tang G, Zhu J, et al.A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):88-102 doi: 10.1109/TGRS.2015.2450759

  • 期刊类型引用(4)

    1. 朱杰,郑加柱,陈红华,杨静,胡平昌,陆敏燕. 结合POI数据的南京市商业中心识别与集聚特征研究. 现代测绘. 2022(06): 34-39 . 百度学术
    2. 金澄,安晓亚,陈占龙,马啸川. 矢量居民地多边形多级图划分聚类方法. 武汉大学学报(信息科学版). 2021(01): 19-29 . 百度学术
    3. 张铭龙,何贞铭. 基于因子分析法的城市商业中心抽取研究. 地理空间信息. 2021(08): 58-60+64+5 . 百度学术
    4. 李卫东,张铭龙,段金龙. 基于POI数据的南京市空间格局定量研究. 世界地理研究. 2020(02): 317-326 . 百度学术

    其他类型引用(3)

图(7)  /  表(4)
计量
  • 文章访问数:  3882
  • HTML全文浏览量:  153
  • PDF下载量:  122
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-04-16
  • 发布日期:  2019-05-04

目录

    /

    返回文章
    返回