Oblique Image Based Automatic Aerotriangulation and Its Application in 3D City Model Reconstruction
-
摘要: 在一种具有视点不变性的改进的倾斜影像自动匹配方法的基础上,针对多视倾斜影像光束法平差方法中未知参数多的问题(例如可能导致平差解算不稳定),提出了带有相对姿态参数的倾斜影像光束法平差模型,并给出了该模型的适用范围。对一套典型的数字倾斜摄影仪SWDC-5的倾斜影像数据进行实验,结果表明:当相机之间曝光延迟小,且相对姿态参数可以看作比较严格的刚体时,该方法的自动空中三角测量(简称空三)处理精度较高,单位权中误差为0.46像素,像点平均残差为0.27像素。将该空三成果应用到城市真三维模型重建中,计算机自动得到的三维表面模型纹理比较自然、真实,能够满足一定程度的视觉需求,为大规模城市真三维模型重建提供了参考。Abstract: In this paper, we proposed an automatic aerotriangulation method based on SWDC-5 oblique images. First of all, we designed an improved viewpoint-invariant matching method for oblique images based on the perspective transformation. Secondly, in order to reduce the amount of unknown adjustment parameters (overmuch unknown adjustment parameter may weaken the instability of adjustment solution), we offered a new bundle adjustment model for oblique images which took the relative attitude parameters of cameras into account, and also gave the application scope of the model. Experiments conducted on the typical SWDC-5 oblique images demonstrated that when the relative attitude of cameras (on same camera station) are stable and their cameras exposure are limited within a short time delay, the aero-triangulation accuracy of our method is high, the unit weight error is 0.46 pixels and the average residual of image points is 0.27 pixels. Thirdly, we applied the results of aero-triangulation to PMVS (patch-based multi-view stereo matching) algorithm to gain the dense point-cloud of the experimental city, used screened Poisson reconstruction algorithm to get its 3D mesh, and reconstruct its 3D surface with 3D texture algorithm. Experiments showed that the accuracy of the aero triangulation met the requirements of applications, and the obtained 3D city model had a natural, real texture, all this proved that the idea of automatic reconstruction of 3D city model is feasible and made a good reference for the large-scale 3D city model reconstruction.
-
-
表 1 实验影像数据关系
Table 1 Relationship Between Experimental Image and Its Bottom-View Image at the Same Camera Station
相机名 影像名 单视影像张数/张 对应同时刻曝光下视影像名 对应航带 A相机 07025AR0031~36;05020AR0031~40 16 07025ER0031~36;05020ER0031~40 25;20 B相机 07023BR0036~42;10022BR0035~42 15 07023ER0036~42;10022ER0035~42 23;22 C相机 07024CR0043~50;05021CR0031~38 16 07024ER0043~50;05021ER0031~38 24;21 D相机 07023DR0023~32;10022DR0027~32 13 07023ER0023~32;10022ER0027~32 23;22 E相机 07023ER0031~37;10022ER0032~37 13 07023ER0031~37;10022ER0032~37 23;22 总张数/张 73 65 表 2 两种光束法平差模型的空三精度比较(像元大小为6 μm)
Table 2 Comparison of Aerotriangulation Accuracy for Two Bundle Adjustment Models (Pixel Size: 6 μm)
平差方法1 平差方法2 迭代次数/次 3 3 单位权中误差/μm 2.740 505 2.743 400 像点最大残差/μm 11.2 11.8 像点平均残差/μm 1.610 909 1.612 831 ΔX最大值/m 0.518 332 0.523 301 ΔX平均值/m 0.117 331 0.118 542 ΔY最大值/m 0.233 792 0.236 428 ΔY平均值/m 0.094 365 0.101 304 ΔZ最大值/m 0.500 458 0.506 545 ΔZ平均值/m 0.160 64 0.164 913 表 3 侧视(左/右、前/后)相机与下视相机之间的相对姿态参数平差前后对比
Table 3 Comparison of the Relative Attitude Parameters Between the Two Side- and Bottom- View Cameras Before and After Bundle Adjustment
相对姿态参数 A相机-E相机 C相机-E相机 D相机-E相机 B相机-E相机 初始值 差值 初始值 差值 初始值 差值 初始值 差值 X/m 0.146 -0.051 4 -0.111 0.058 5 -0.027 0.242 8 0.045 -0.236 9 Y/m -0.004 -0.003 9 -0.014 0.027 2 -0.121 0.268 2 0.149 0.186 3 Z/m 0.003 -0.022 9 0.037 -0.006 9 0.018 -0.293 8 0.026 -0.333 4 φ/(°) -44.800 2 0.000 0 44.913 33 0.000 0 -1.437 79 -0.004 3 0.230 507 -0.010 7 w/(°) -0.581 43 0.000 0 0.499 547 0.000 0 45.147 42 0.038 7 -44.607 8 -0.033 4 κ/(°) 90.153 45 0.000 0 -89.844 4 0.000 0 1.183 133 0.015 7 -179.615 0.004 9 注:差值=结算值-初始值。 表 4 两种平差模型的优点和适用范围
Table 4 Advantages and Adoption Scopes of the Two Bundle Adjustment Models
优点 适用范围 平差方法1 解算精度高,适用范围广 相对姿态变化,各视相机曝光延迟大 平差方法2 未知数少,解算更加稳定 相对姿态稳定,且各视相机曝光延迟小 -
[1] Zebedin L, Klaus A, Geymayer B G, et al. Towards 3D Map Generation from Digital Aerial Images[J]. Journal of Photogrammetry and Remote Sensing, 2006, 60(6):413-427
[2] Nguyen H M, Wunsche B, Delmas P, et al. High-Definition Texture Reconstruction for 3D Image-based Modeling[C]. The 21st International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2013
[3] Fritsch D, Rothermel M. Oblique Image Data Processing:Potential, Experience, Recommendations[EB/OL]. http://www.ifp.uni-stuttgart.de/publications/phowo13/090Fritsch.pdf, 2015
[4] 肖雄武,郭丙轩,李德仁,等. 一种具有仿射不变性的倾斜影像快速匹配方法[J].测绘学报,2015,44(4):414-421 Xiao Xiongwu, Guo Bingxuan, Li Deren, et al. A Quick and Affine Invariance Matching Method for Oblique Images[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4):414-421
[5] Hu H, Zhu Q, Du Z, et al. Reliable Spatial Relationship Constrained Feature Point Matching of Oblique Aerial Images[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(1):49-58
[6] Richard H, Andrew Z. Multiple View Geometry in Computer Vision[M]. 2nd ed. United Kingdom:Cambridge University Press, 2003:116-127, 153-158, 239-261, 325-343
[7] 肖雄武,李德仁,郭丙轩,等.一种具有视点不变性的倾斜影像快速匹配方法[J/OL].武汉大学学报·信息科学版,2015,DOI:10.13203/j.whugis20140405 Xiao Xiongwu, Li Deren, Guo Bingxuan, et al. A Robust and Rapid Viewpoint-Invariant Matching Method for Oblique Images[J/OL]. Geomatics and Information Science of Wuhan University, 2015, DOI:10.13203/j.whugis20140405
[8] 张剑清,潘励,王树根.摄影测量学[M].2版.武汉:武汉大学出版社,2009:54-64,87-116,173-178 Zhang Jianqing, Pan Li, Wang Shugen. Photogrammetry[M]. 2nd ed. Wuhan:Wuhan University Press, 2009:54-64, 87-116, 173-178
[9] 李德仁,袁修孝.误差处理与可靠性理论[M].2版.武汉:武汉大学出版社,2012:44-62 Li Deren, Yuan Xiuxiao. Error Processing and Reliability Theory[M]. 2nd ed. Wuhan:Wuhan University Press, 2012:44-62
[10] Hirschmuller H. Stereo Processing by Semi-global Matching and Mutual Information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341
[11] Rothermel M, Wenzel K, Fritsch D, et al. SURE:Photogrammetric Surface Reconstruction from Imagery[OL]. The LC3D Workshop, http://www.ifp.uni-stuttgart.de/publications/2012/Rothermel_etal_lc3d.pdf, 2012
[12] Furukawa Y, Ponce J. Accurate, Dense, and Robust Multiview Stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376
[13] Labatut P, Pons J P, Keriven R. Efficient Multi-view Reconstruction of Large-Scale Scenes Using Interest Points, Delaunay Triangulation and Graph Cuts[C]. IEEE International Conference on Computer Vision, Rio de Janeiro, 2007
[14] Labatut P, Pons J P, Keriven R. Robust and Efficient Surface Reconstruction from Range Data[J]. Computer Graphics Forum, 2009, 28(8):2275-2290
[15] Kazhdan M, Bolitho M, Hoppe H. Poisson Surface Reconstruction[C]. The 4th Eurographics Symposium on Geometry Processing, Switzerland, 2006
[16] Kazhdan M, Hoppe H. Screened Poisson Surface Reconstruction[J]. ACM Transactions on Graphics, 2013, 32(3):1-13
[17] Bornik A, Karner K, Bauer J, et al. High Quality Texture Reconstruction from Multiple Views[J]. The Journal of Visualization and Computer Animation, 2001, 12(5):263-276
[18] 张春森,张卫龙,郭丙轩,等.倾斜影像的三维纹理快速重建[J].测绘学报,2015,44(7):782-790 Zhang Chunsen, Zhang Weilong, Guo Bingxuan, et al. Rapidly 3D Texture Reconstruction Based on Oblique Photography[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7):782-790
[19] David G L. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110
[20] 肖雄武.基于特征不变的倾斜影像匹配算法研究与应用[D].西安:西安科技大学,2014 Xiao Xiongwu. The Research and Application of Oblique Images Matching Methods Based on Invariant Features[D]. Xi'an:Xi'an University of Science and Technology, 2014
[21] 时月茹.SWDC-5倾斜影像光束法平差研究与实现[D].武汉:武汉大学,2014 Shi Yueru. Research and Achievement of SWDC-5 Oblique Image Bundle Adjustment[D]. Wuhan:Wuhan University, 2014
[22] Fraser C S. Digital Camera Self-Calibration[J]. Journal of Photogrammetry and Remote Sensing, 1997, 52:149-159
[23] Harris C, Stephens M. A Combined Corner and Edge Detector[C]. The 4th Alvey Vision Conference, Manchester, 1988
[24] 肖雄武,郭丙轩,潘飞,等.利用泰勒展开的点特征子像素定位方法[J].武汉大学学报·信息科学版, 2014,39(10):1231-1235 Xiao Xiongwu, Guo Bingxuan, Pan Fei, et al. Sub-pixel Location of Feature Point Based on Taylor Expansion and Its Application[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10):1231-1235
[25] Zhang Z. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations[C]. IEEE International Conference on Computer Vision, Kerkyra, 1999
[26] Klippenstein J, Zhang H. Quantitative Evaluation of Feature Extractors for Visual SLAM[C]. The 4th Canadian Conference on Computer and Robot Vision, IEEE Computer Society, Ontario, 2007
[27] Xiao X, Guo B, Li D, et al. Multi-View Stereo Matching Based on Self-Adaptive Patch and Image Grouping for Multiple Unmanned Aerial Vehicle Imagery[J]. Remote Sensing, 2016, 8(2):89
[28] Lorensen W E, Cline H E. Marching Cubes:A High Resolution 3D Surface Construction Algorithm[J]. Computers and Graphics, 1987, 21(4):163-169
[29] 李德仁,刘立坤,邵振峰.集成倾斜航空摄影测量和地面移动测量技术的城市环境监测[J].武汉大学学报·信息科学版,2015,40(4):427-435 Li Deren, Liu Likun, Shao Zhenfeng. An Integration of Aerial Oblique Photogrammetry and Mobile Mapping System for Urban Geographical Conditions Monitoring[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4):427-435
[30] 龚健雅,崔婷婷,单杰,等.利用车载移动测量数据的建筑物立面建模方法[J]. 武汉大学学报·信息科学版,2015,40(9):1137-1143 Gong Jianya, Cui Tingting, Shan Jie, et al. A Survey on Facade Modeling Using LiDAR Point Clouds and Image Sequences Collected by Mobile Mapping Systems[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1137-1143
-
期刊类型引用(10)
1. 曾广泉,马韬,张孟希,戴妍,陈凯文,丁继辉,俞双恩,王中文. 基于无人机多光谱影像的不同施氮量水稻LAI反演方法研究. 江苏农业科学. 2024(20): 41-48 . 百度学术
2. 高钰琪,许桂玲,冯跃华,王晓珂,任红军,由晓璇,韩志丽,李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究. 中国稻米. 2023(05): 38-44 . 百度学术
3. 彭晓伟,张爱军,王楠,赵丽,杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息. 2022(01): 32-39 . 百度学术
4. 王晓珂,刘婷婷,许桂玲,冯跃华,彭金凤,李杰,罗强鑫,韩志丽,卢苇,PHONENASAY Somsana. 基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型. 中国稻米. 2021(03): 21-29 . 百度学术
5. 王浩淼,宋苗语,李翔,扈朝阳,鲁任翔,王翔,马会勤. 无人机高光谱遥感监测葡萄长势与缺株定位. 园艺学报. 2021(08): 1626-1634 . 百度学术
6. 刘雅婷,龚龑,段博,方圣辉,彭漪. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测. 武汉大学学报(信息科学版). 2020(02): 265-272 . 百度学术
7. 陈晓凯,李粉玲,王玉娜,史博太,侯玉昊,常庆瑞. 无人机高光谱遥感估算冬小麦叶面积指数. 农业工程学报. 2020(22): 40-49 . 百度学术
8. 落莉莉,常庆瑞,武旭梅,杨景,李粉玲,王琦. 夏玉米叶片光合色素含量高光谱估算. 干旱地区农业研究. 2019(04): 178-183 . 百度学术
9. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 . 百度学术
10. 李亚妮,鲁蕾,刘勇. 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报. 2017(12): 3976-3984 . 百度学术
其他类型引用(17)