系数矩阵误差对地壳应变参数反演的影响

王乐洋, 许光煜

王乐洋, 许光煜. 系数矩阵误差对地壳应变参数反演的影响[J]. 武汉大学学报 ( 信息科学版), 2017, 42(10): 1453-1460. DOI: 10.13203/j.whugis20160010
引用本文: 王乐洋, 许光煜. 系数矩阵误差对地壳应变参数反演的影响[J]. 武汉大学学报 ( 信息科学版), 2017, 42(10): 1453-1460. DOI: 10.13203/j.whugis20160010
WANG Leyang, XU Guangyu. The Effect of the Random Coefficient Matrix on Adjustment of the Inversion of Crustal Strain Parameters Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1453-1460. DOI: 10.13203/j.whugis20160010
Citation: WANG Leyang, XU Guangyu. The Effect of the Random Coefficient Matrix on Adjustment of the Inversion of Crustal Strain Parameters Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1453-1460. DOI: 10.13203/j.whugis20160010

系数矩阵误差对地壳应变参数反演的影响

基金项目: 

国家自然科学基金 41664001

国家自然科学基金 41204003

江西省杰出青-人才资助计划 20162BCB23050

测绘地理信息公益性行业科研专项 201512026

国家重点研发计划 2016YFB0501405

江西省教育厅科技项目 GJJ150595

流域生态与地理环境监测国家测绘地理信息局重点实验室开放基金 WE2015005

对地观测技术国家测绘地理信息局重点实验室开放基金 K201502

东华理工大学博士科研启动基金 DHBK201113

详细信息
    作者简介:

    王乐洋, 博士, 副教授, 主要研究方向为大地测量反演及大地测量数据处理. wleyang@163.com

  • 中图分类号: P207

The Effect of the Random Coefficient Matrix on Adjustment of the Inversion of Crustal Strain Parameters Model

Funds: 

The National Natural Science Foundation of China 41664001

The National Natural Science Foundation of China 41204003

the Support Program for Outstanding Youth Talents in Jiangxi Province 20162BCB23050

the National Department Public Benefit Research Foundation (Surveying, Mapping and Geoinformation) 201512026

the National Key Research and Development Program 2016YFB0501405

the Science and Technology Project of the Education Department of Jiangxi Province GJJ150595

the Project of Key Laboratory of Watershed Ecology and Geographical Environment Monitoring WE2015005

the Project of Key Laboratory of Mapping from Space, NASG K201502

the Scientific Research Foundation of ECIT DHBK201113

More Information
    Author Bio:

    WANG Leyang, PhD, associate professor, specilizes in geodetic inversion and data processing. E-mail: wleyang@163.com

  • 摘要: 针对地壳应变参数反演模型中系数矩阵含随机和非随机元素及观测数据存在相关性等情况,以部分变量误差(partial-errors-in-variables,PEIV)模型为基础,采用了地壳应变参数反演的加权总体最小二乘算法,该算法不受系数矩阵和权矩阵结构的限制,能够快速、有效解决系数矩阵含有随机误差的模型问题。结合推导得到的最小二乘改正项公式,对地壳反演模型中坐标点误差对反演参数求解的影响进行了分析。通过对模拟数据和川滇地区的实际数据进行处理,得出系数矩阵误差对地壳应变参数反演的影响主要受GPS站点坐标值量级以及应变参数量级的牵制。
    Abstract: Theweighted total least squares method based on partial errors-in-variables (PEIV for short) model is used to solve the inversion parameters of crustal strain model. It not only considers the error of observation (displacement or velocity field), but also the error effects from the coefficient matrix, generally composed of monitoring points coordinates. When taking the special structure of the coefficient matrix in the geodetic inversion model into account, we insure that the repeated coordinates have the same residual and that the constants are not allocated any correction. The method usedin this paper can meet these requirements as it separates the random elements from the constant elements taking advantage of the partial errors-in-variables model. All calculation formulae for crust strain (rate) parameters inversion based on partial errors-in-variables using monitoring point displacement or velocity fields are deduced. In addition, the derivate correction of weighted least squares (WLS) is used to analyze the effect of the random coefficient. The discrepancy between the weighted least squares solution and WTLS solution was also investigated. Because of the complexity of the WTLS solution, we propose a formulation to relate the WLS\and WTLS solutions based on Xu (J Geod 86:661-675, 2012). A simulation using data from the Sichuan-Yunnan region permits a comparison and analysis of the effect of the random design matrix. The experimental results reveal that the effect of the random coefficient matrix on adjustment of the inversion of crustal strain (rate) parameters model is mainly depend on the order of value of the GPS coordinates and the crustal strain parameters themselves.
  • 图  1   方案1中地壳应变参数反演的模拟站点

    Figure  1.   Simulated Network Stations of the Inversion of Crustal Strain in Case 1

    图  2   各方案观测向量和系数矩阵随机元素残差值(PEIV-WTLS)

    Figure  2.   Residuals of Observation Vector and Coefficient Matrix in Each Case(PEIV-WTLS)

    图  3   川滇地区GPS监测点分布图[14]

    Figure  3.   The Distribution of GPS Stations in the Region of Sichuan and Yunnan[14]

    图  4   川滇地区地壳应变参数反演过程中观测向量和系数矩阵随机元素残差值

    Figure  4.   Residuals of Observation Vector and Coefficient Matrix in the Region of Sichuan and Yunnan

    表  1   各方案的情景设置

    Table  1   The Scene of the Three Schemes

    方案1 方案2 方案3
    区域 100 m×100 m 200 m×200 m 1 000 m×1 000 m
    采样间隔 沿xy轴每隔10 m 沿xy轴每隔20 m 沿xy轴每隔100 m
    坐标点总数(采样) 121个 121个 121个
    模拟应变参数真值 εx=200×10-8
    εy=-80×10-8
    εxy=1 000×10-8
    ω=1 100×10-8
    εx=200×10-9
    εy=-80×10-9
    εxy=1 000×10-9
    ω=1 100×10-9
    εx=200×10-10
    εy=-80×10-10
    εxy=1 000×10-10
    ω=1 100×10-10
    下载: 导出CSV

    表  2   各方案参数计算结果

    Table  2   Results of Parameters in Each Case

    εx εy εxy w
    方案1 真值 200×10-8 -80×10-8 1 000×10-8 1 100×10-8
    WLS 189×10-8 -86×10-8 1 006×10-8 1 097×10-8
    PEIV-WTLS 189×10-8 -86×10-8 1 006×10-8 1 097×10-8
    b -1.5×10-18 2.6×10-17 -1.5×10-17 -1.7×10-17
    方案2 真值 200×10-9 -80×10-9 1000×10-9 1100×10-9
    WLS 195×10-9 -81×10-9 1005×10-9 1100×10-9
    PEIV-WTLS 195×10-9 -81×10-9 1005×10-9 1100×10-9
    b -3.2×10-21 8.9×10-21 -4.8×10-21 -7.1×10-21
    方案3 真值 200×10-10 -80×10-10 1 000×10-10 1 100×10-10
    WLS 202×10-10 -83×10-10 999×10-10 1 103×10-10
    PEIV-WTLS 202×10-10 -83×10-10 999×10-10 1 103×10-10
    b -2.9×10-23 9.8×10-23 -1.0×10-22 -1.2×10-22
    下载: 导出CSV

    表  3   各块体应变率参数计算改正项b结果

    Table  3   The Calculation Results of Each Block Strain Rate Parameter

    改正项 u/a v/a εx/a εy/a εxy/a ω/a
    b -5.6×10-16 -2.2×10-15 -4.4×10-22 8.7×10-24 1.9×10-23 6.9×10-23
    bⅡ1 2.2×10-15 -1.2×10-15 3.1×10-23 -1.6×10-23 -3.4×10-23 -5.0×10-23
    bⅡ2 2.2×10-15 7.5×10-18 1.2×10-24 -4.5×10-25 -2.7×10-24 -4.3×10-24
    bⅢ1 -2.7×10-15 9.4×10-15 1.6×10-20 -1.1×10-21 -2.7×10-21 -2.5×10-21
    bⅢ2 8.6×10-16 2.1×10-15 1.7×10-23 -2.4×10-23 -2.8×10-24 -1.2×10-24
    bⅢ3 -3.4×10-13 5.4×10-13 5.3×10-22 2.2×10-22 3.0×10-22 1.8×10-22
    b 1.8×10-13 1.8×10-13 -1.3×10-20 -4.8×10-22 -6.9×10-21 -6.4×10-21
    b -5.6×10-16 -3.7×10-16 -1.9×10-24 7.1×10-25 5.4×10-26 1.2×10-24
    下载: 导出CSV
  • [1] 许才军.大地测量联合反演理论和方法研究进展[J].武汉大学学报·信息科学版, 2001, 26(6):555-561 http://ch.whu.edu.cn/CN/abstract/abstract5232.shtml

    Xu Caijun. Progress of Joint Inversion on Geodesy and Geophysics[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 555-561 http://ch.whu.edu.cn/CN/abstract/abstract5232.shtml

    [2] 江在森, 张希, 王双绪等.利用地形变观测量求解地壳水平应变场的方法[J].地震, 1999, 19(1):41-48 http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN199901005.htm

    Jiang Zaisen, Zhang Xi, Wang Shuangxu, et al.The Method of Solving Horizontal Crustal Strain Field by Using Crustal Deformation Observation[J]. Earthquake, 1999, 19(1):41-48 http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN199901005.htm

    [3] 李延兴, 胡新康, 帅平, 等.中国大陆地壳水平运动速度场与应变场[J].国际地震动态, 2002(7):1-9 http://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200207000.htm

    Li Yanxing, Hu Xinkang, Shuai Ping, et al.The Velocity Fields and Strain Fields of Horizontal Crust Motion of the Mainland of China[J]. Recent Developments in World Seismology, 2002, (7): 1-9 http://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200207000.htm

    [4] 杨国华, 李延兴, 韩月萍, 等.由GPS观测结果推导中国大陆现今水平应变场[J].地震学报, 2002, 24(4):337-347 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200204000.htm

    Yang Guohua, Li Yanxing, Han Yueping, et al. Current Horizontal Strain Field in Chinese Mainland Derived from GPS Data[J].Acta Seismologica Sinica, 2002, 24(4): 337-347 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200204000.htm

    [5] 吕江宁, 沈正康, 王敏.川滇地区现代地壳运动速度场和活动块体模型研究[J].地震地质, 2003, 25(4):543-554 http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200304002.htm

    Lü Jiangning, Shen Zhengkang, Wang Min. Contemporary Crustal Deformation and Active Tectonic Block Model of The Sichuan-Yunnan Region, China[J]. Seismology and Geology, 2003, 25(4): 543-554 http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200304002.htm

    [6] 王晓强, 李杰, Alexander Z, 等.利用GPS形变资料研究天山及邻近地区地壳水平位移与应变特征[J].地震学报, 2007, 29(1):31-37 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200701003.htm

    Wang Xiaoqiang, Li Jie, Alexanderz, et al. Horizontal Movement and Strain Characteristics in Tianshan and Its Adjacent Region with GPS Deformation Data[J].Acta Seismologica Sinica, 2007, 29(1): 31-37 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200701003.htm

    [7] 王阎昭, 王恩宁, 沈正康, 等.基于GPS资料约束反演川滇地区主要断裂现今活动速率[J].中国科学(D辑), 2008, 38(5):582-597 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200805006.htm

    Wang Yanzhao, Wang Enning, Shen Zhengkang, et al. GPS-constrained Inversion of Present-day Slip Rates along Major Faults of The Sichuan-Yunnan Region, China[J].Science in China Series D: Earth Sciences, 2008, 38(5): 582-597 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200805006.htm

    [8] 王乐洋.地壳应变参数反演的总体最小二乘方法[J].大地测量与地球动力学, 2013, 33(3):106-110 http://youxian.cnki.com.cn/yxdetail.aspx?filename=WHCH201710017&dbname=CJFDPREP

    Wang Leyang. Inversion of Crustal Strain Parameters Based on Total Least Squares[J].Journal of Geodesy and Geodynamics, 2013, 33(3): 106-110 http://youxian.cnki.com.cn/yxdetail.aspx?filename=WHCH201710017&dbname=CJFDPREP

    [9]

    Xu P L, Liu J N, Shi C. Total Least Squares Adjustment in Partial Errors-in-variables Models: Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675 doi: 10.1007/s00190-012-0552-9

    [10] 曾文宪. 系数矩阵误差对EIV模型平差结果的影响研究[D]. 武汉: 武汉大学, 2013

    Zeng Wenxian. Effect of the Random Design Matrix on Adjustment of an EIV Model and Its Reliability Theory[D].Wuhan: Wuhan University, 2013

    [11] 陶本藻.自由网平差与变形分析[M].武汉:武汉测绘科技大学出版社, 2011

    Tao Benzao. Free Network Adjustment and Deformation Analysis[M]. Wuhan: Wuhan Technical University of Surveying and Mapping Press, 2011

    [12]

    Schaffrin B, Felus Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate[J]. Journal of Geodesy, 2008, 82(6): 373-383 doi: 10.1007/s00190-007-0186-5

    [13] 徐锡伟, 闻学泽, 郑荣章, 等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D辑), 2003, 33(S1): 151-162 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1016.htm

    Xu Xiwei, Wen Xueze, Zheng Rongzhang, et al. Pattern of Latest Tectonic Motion and Its Dynamics for Active Blocks in Sichuan-Yunnan Region, China[J]. Science in China Series D: Earth Sciences, 2003, 33 (Suppl 1): 151-162 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1016.htm

    [14]

    Xu C J, Wen Y M. Identification and Analyze of Crustal Motion and Deformation Models in The Sichuan-Yunnan Region[J]. Journal of Applied Geodesy, 2007, 1(4):213-222 http://adsabs.harvard.edu/abs/2007JAGeo...1..213C

    [15]

    Shen Z K, Lv J N, Wang M, et al. Contemporary Crustal Deformation Around The Southeast Borderland of The Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11) doi: 10.1029/2004JB003421/suppinfo

    [16] 王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D]. 武汉: 武汉大学, 2011

    Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan: Wuhan University, 2011

  • 期刊类型引用(4)

    1. 王乐洋,邹传义. PEIV模型参数估计理论及其应用研究进展. 武汉大学学报(信息科学版). 2021(09): 1273-1283+1297 . 百度学术
    2. 钟光伟,符平贵,杨钢,张俊. 融合LSC和REHSM的地壳形变分析模型. 矿山测量. 2020(05): 27-30 . 百度学术
    3. 韩杰,张松林. 附加一次和二次等式约束的Partial-EIV模型及相应算法. 测绘科学技术学报. 2019(01): 17-22+27 . 百度学术
    4. 吕志鹏,隋立芬. 基于非线性高斯-赫尔默特模型的结构总体最小二乘法. 武汉大学学报(信息科学版). 2019(12): 1808-1815 . 百度学术

    其他类型引用(3)

图(4)  /  表(3)
计量
  • 文章访问数:  1444
  • HTML全文浏览量:  267
  • PDF下载量:  272
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-08-18
  • 发布日期:  2017-10-04

目录

    /

    返回文章
    返回