基于图匹配的城市建筑群典型字母型分布的识别

A Graph Match Approach to Typical Letter-like Pattern Recognition in Urban Building Groups

  • 摘要: 建筑群空间分布结构对于制图综合和多尺度表达等具有重要意义。结合国内外对该问题的研究,从结构模式识别的角度提出了基于图匹配算法的建筑群典型字母型分布模式的识别方法。首先统计和提取感兴趣的字母型分布模式,选定基元,选取合理的属性信息参数和结构信息参数,利用属性关系图形式语言描述模式,构建模板库。然后对建筑群抽象和降维,将其转化为基于属性关系图表达的场模型。最后通过Ullman图匹配算法求解非精确子图同构问题,从而识别建筑群中的典型字母型分布模式子集。实验表明该方法能够有效识别典型字母型建筑群分布,并为地图综合提供了新思路。

     

    Abstract: Map patterns in building groups have great importance in Cartographic Generalization and Multi-Scale Representation. On the basis of related research, a graph match approach is proposed to recognize the typical letter-like patterns in building groups. Typical letter-like pattern templates are extracted and analyzed, and selected as elementary units and described by a Attributed Relational Graph using attribute and structure parameters. A template library was established. Buildings to be abstracted and reduced are translated into Field Model based on the Attributed Relational Graph. Typical letter-like patterns are recognized by solving the imprecise sub-graph isomorphism problem with the Ullman algorithm. Experiments show that this approach is effective, feasible, and practical for typical letter-like pattern recognition and the results agree with human spatial cognition, providing a new concept in cartographic generalization.

     

/

返回文章
返回