公共地图服务的群体用户访问行为时序特征模型及预测

吴华意, 李锐, 周振, 蒋捷, 桂志鹏

吴华意, 李锐, 周振, 蒋捷, 桂志鹏. 公共地图服务的群体用户访问行为时序特征模型及预测[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1279-1286,1316. DOI: 10.13203/j.whugis20150283
引用本文: 吴华意, 李锐, 周振, 蒋捷, 桂志鹏. 公共地图服务的群体用户访问行为时序特征模型及预测[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1279-1286,1316. DOI: 10.13203/j.whugis20150283
WU Huayi, LI Rui, ZHOU Zhen, JIANG Jie, GUI Zhipeng. Research and Prediction on Time-Sequence Characteristics of Group-User Access Behavior in Public Map Service[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1279-1286,1316. DOI: 10.13203/j.whugis20150283
Citation: WU Huayi, LI Rui, ZHOU Zhen, JIANG Jie, GUI Zhipeng. Research and Prediction on Time-Sequence Characteristics of Group-User Access Behavior in Public Map Service[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1279-1286,1316. DOI: 10.13203/j.whugis20150283

公共地图服务的群体用户访问行为时序特征模型及预测

基金项目: 国家自然科学基金资助项目(41371370);国家重点基础研究发展计划(973计划)资助项目(2012CB719906)。
详细信息
    作者简介:

    吴华意,教授,博士,博士生导师,主要研究方向为地理空间数据共享与服务、地理空间数据挖掘及地理信息工程与应用。E-mail:wuhuayi@whu.edu.cn

    通讯作者:

    李锐,博士,副教授。E-mail:ruili@whu.edu.cn

  • 中图分类号: P208;TP311

Research and Prediction on Time-Sequence Characteristics of Group-User Access Behavior in Public Map Service

Funds: The National Natural Science Foundation of China, No. 41371370; the National Key Basic Research and Development Program (973 Program) of China, No. 2012CB719906.
  • 摘要: 群体用户对公共地图服务的访问行为具有社会性,存在着一定的群体访问行为模式。该模式具有高强度的访问聚集性与突发性,且决定着公共地图服务对云计算资源的需求。如何有效地表达和捕捉群体用户访问聚集性及其访问强度的时序变化特征,进行准确的公共地图服务负载预测,是实现按需选择和调度云计算资源,应对海量用户并发服务挑战的关键。本文基于海量的公共地图服务用户访问日志和时间序列聚类方法,建立了群体用户访问到达行为的时序分布模型;考虑降低负载预测复杂度的同时,利用访问强度具有多峰值、变强度以及周期性的特点,分割访问到达率在一个周期内时间序列上的模式区间,实现访问强度时序聚类划分的最优;基于各访问模式区间不同的访问到达概率密度的分布,提出了基于累积概率分布的时间序列平滑预测服务负载方法,该预测方法的算法复杂度低,且所需的先验数据量小。实验证明,本文提出的基于时序的群体用户访问到达率最优分割方法及其预测方法可以以较高的准确率预测服务负载。该方法在应对海量用户并发访问挑战的同时,可提高云计算资源的利用效率,解决公共地图服务质量与服务成本的平衡性问题。
    Abstract: Group-user access behavior in public map service has a social nature and there is a certain group-user access pattern, which has a high access aggregative and outburst feature. However, the feature has a great influence on the demands for cloud computing resources for public map service. Thus, how to effectively express and capture the access aggregative feature and the changes of access intensity over time, and predict the access load of public map service accurately, is the important key for selecting and scheduling cloud computing resources on demand, that can address the challenge of concurrent service for massive users. Based on the volume user access logs from public map service and the time-sequence clustering method, this paper first builds a time-sequence distribution model for group-user access arriving behavior; then using the features of multi-peak, variable and periodicity in access intensity, this paper optimally partitions the time-sequence of access arrival rate in a period into different temporal patterns; as there are different probability density distribution of access arrival rate in different temporal patterns, this paper proposes a method of service load forecasting method based on a smoothing time-sequence of cumulative probability distribution. This method has a low complexity and needs few priori data. Experimental results and method application prove that the optimal partition and prediction for the access arrival rate of group-user access based on a time-sequence have a good service response performance for massive users concurrent access, improve the utilization of cloud computing resource, and balance the service quality and cost in public map service.
  • [1] Li Deren, Sui Haigang, Shan Jie, et al. Discussion on Key Technologies of Geographic National Conditions Monitoring[J].Geomatics and Information Science of Wuhan University,2012,37(5):505-512(李德仁,眭海刚,单杰,等.论地理国情监测的技术支撑[J].武汉大学学报·信息科学版,2012,37(5):505-512)
    [2] Wu Huayi, Zhang Hanwu. QoGIS: Concept and Research Framework[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 385-388(吴华意,章汉武. 地理信息服务质量(QoGIS):概念和研究框架 [J]. 武汉大学学报·信息科学版, 2007, 32(5): 385-388)
    [3] Zhang Hanwu,Wu Huayi,Hu Yueming,et al. From Quality of Geospatial Data to Quality of Geospatial Information Services[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1 104-1 107(章汉武,吴华意,胡月明,等. 从地理空间数据质量到地理空间信息服务质量[J]. 武汉大学学报·信息科学版, 2010, 35(9): 1 104-1 107)
    [4] Gong J, Wu H, Zhang T, et al. Geospatial Service Web: Towards Integrated Cyberinfrastructure for GIScience[J]. Geo-spatial Information Science, 2012, 15(2): 73-84
    [5] Li Deren. The Geo-spatial Information Science Mission [J]. Geo-spatial Information Science, 2012, 15(1): 1-2
    [6] Gao J, Pattabhiraman P, Bai X, et al. SaaS Performance and Scalability Evaluation in Clouds[C]. 2011 IEEE 6th International Symposium on Service Oriented System Engineering (SOSE), Irvine, CA,2011
    [7] Badger L, Grance T, Patt-Corner R, et al. Cloud Computing Synopsis and Recommendations[S]. U.S. Department of Commerce: NIST Special Publication 800-146, 2012
    [8] Wu Jun, Xu Ming. A Comparative Analysis on the Billing Model of Public Cloud Service[J]. Telecommunications Science, 2012, 28(1): 127-132(吴俊, 徐溟. 公有云服务计费模式比较研究[J]. 电信科学, 2012, 28(1): 127-132)
    [9] Furht B, Escalante A. Handbook of Cloud Computing[M]. New York: Springer, 2010
    [10] Zhang Bo, Wu Lili, Zhou Min. The Analysis of User Behavior Based on Web Usage Mining[J].Computer Science,2006,33(8):213-214(张波, 巫莉莉, 周敏. 基于Web 使用挖掘的用户行为分析[J]. 计算机科学, 2006, 33(8): 213-214)
    [11] Li R, Guo R, Xu Z, et al. A Prefetching Model Based on Access Popularity for Geospatial Data in a Cluster-based Caching System[J]. International Journal of Geographical Information Science, 2012,26 (10): 1 831-1 844
    [12] Fisher D. Hotmap: Looking at Geographic Attention[J]. IEEE Transactions on Visualization & Computer Graphics, 2007, 13(6):1 184-1 191
    [13] Talagala N, Asami S, Patterson D, et al. The Art of Massive Storage: A Web Image Archive[J]. Computer, 2000,33(11):22-28
    [14] Wang Hao, Pan Shaoming, Peng Min, et al. Zipf-like Distribution and Its Application Analysis for Image Data Tile Request in Digital Earth[J]. Geomatics and Information Science of Wuhan University, 2010,35 (3):356-359 (王浩,潘少明,彭敏,等. 数字地球中影像数据的Zipf-like访问分布及应用分析[J]. 武汉大学学报·信息科学版,2010,35(3):356-359)
    [15] Park D J,Kim H J. Prefetch Policies for Large Objects in a Web-enabled GIS Application[J]. Data & Knowledge Engineering, 2001,37(1): 65-84
    [16] Yang Chaowei, Wu Huayi, Huang Qunying, et al. Using Spatial Principles to Optimize Distributed Computing for Enabling the Physical Science Discoveries[J]. Proceedings of the National Academy of Sciences of the United States of America,2011, 108 (14):5 498-5 503
    [17] Wang Binfei. Access Pattern Analysis and Performance Optimization of IP Network Video Service System[D]. Hefei:University of Science and Technology of China, 2010(王炳飞. IP 网络视频服务系统访问模式分析和性能优化[D]. 合肥: 中国科学技术大学, 2010)
    [18] Wu H Y, Li Z L, Zhang H W, et al. Monitoring and Evaluating Web Map Service Resources for Optimizing Map Composition over the Internet to Support Decision Making[J]. Computers and Geosciences, 2011,37(4):485-494
    [19] Li D, Zhang J, Wu H. Spatial Data Quality and Beyond [J]. International Journal of Geographical Information Science, 2012, 26(12): 2 277-2 290
    [20] Zhang Hanwu, Zhu Xinyan, Zhang Songbo. Response Time in WebGIS Based on Vector Data[J]. Journal of Geomatics, 2005, 30(2): 25-27(章汉武, 朱欣焰, 张松波. 基于矢量的 WebGIS 用户响应时间问题的若干研究[J]. 测绘信息与工程, 2005, 30(2): 25-27)
  • 期刊类型引用(15)

    1. 肖泽辉,季青,庞小平,闫忠男. 利用海洋2B卫星数据反演南极海冰表面积雪厚度. 测绘地理信息. 2024(06): 64-68 . 百度学术
    2. 张颖,刘建强,石立坚,蒋城飞. 极地海冰观测卫星的发展现状与展望. 遥感技术与应用. 2024(06): 1339-1352 . 百度学术
    3. 陈国栋,陈钰,金涛勇,张志杰,李黎. 利用Cryosat-2 SAR模式数据确定北冰洋海平面模型. 大地测量与地球动力学. 2023(06): 606-611+621 . 百度学术
    4. 于亚冉,王丽华,张梦悦. 基于CryoSat-2的北极海冰类型分类. 测绘与空间地理信息. 2022(01): 147-150 . 百度学术
    5. 陈国栋,梁圣豪,孟子淇,朱家亨. 利用Cryosat-2数据确定格陵兰冰盖高程和体积变化. 苏州科技大学学报(自然科学版). 2022(01): 66-70+76 . 百度学术
    6. 屈猛,赵羲,庞小平,雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展. 地球科学进展. 2022(04): 382-391 . 百度学术
    7. 高翔,庞小平,季青. 利用CryoSat-2测高数据研究南极威德尔海海冰出水高度时空变化. 武汉大学学报(信息科学版). 2021(01): 125-132 . 百度学术
    8. 张婷,张杰,张晰. 基于CryoSat-2数据的2014—2018年北极海冰厚度分析. 海洋科学进展. 2020(03): 425-434 . 百度学术
    9. 王志勇,王丽华,张晰,孙伟富,刘健. 雷达高度计在海冰厚度探测中的研究进展. 遥感信息. 2020(05): 1-8 . 百度学术
    10. 满富康,夏文韬,张杰,柯长青. 基于OSI-SAF微波遥感数据的北极一年冰和多年冰研究. 极地研究. 2019(01): 69-83 . 百度学术
    11. 吴星泉,张胜军,车德福. 利用CryoSat-2卫星测高资料确定北极海冰干舷高. 测绘通报. 2019(07): 64-68 . 百度学术
    12. 庞小平,刘清全,季青. 北极一年海冰表面积雪深度遥感反演与时序分析. 武汉大学学报(信息科学版). 2018(07): 971-977 . 百度学术
    13. 蒋广敏,戴利,代欣. 基于改进遗传算法的镀层氧化膜厚度测量研究. 周口师范学院学报. 2018(05): 121-124 . 百度学术
    14. 王蔓蔓,柯长青,邵珠德. 基于CryoSat-2卫星测高数据的北极海冰体积估算方法. 海洋学报. 2017(03): 135-144 . 百度学术
    15. 袁乐先,李斐,张胜凯,朱婷婷,左耀文. 利用ICESat/GLAS数据研究北极海冰干舷高度. 武汉大学学报(信息科学版). 2016(09): 1176-1182 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  1689
  • HTML全文浏览量:  66
  • PDF下载量:  878
  • 被引次数: 35
出版历程
  • 收稿日期:  2015-05-05
  • 发布日期:  2015-10-04

目录

    /

    返回文章
    返回