Comparison of Sea Ice Thickness Retrieval Algorithms from CryoSat-2 Satellite Altimeter Data
-
摘要: 以北极为研究区,使用CryoSat-2数据,利用现有海冰厚度卫星测高研究中4种主流算法(Laxon03算法、Kurtz09算法、Yi11算法和Laxon13算法)分别对北冰洋海冰厚度进行估算,并将估算结果与研究区IceBridge机载激光测高冰厚数据进行了比较,探索各算法海冰厚度估算的差异,寻找最优的估算算法,为估算长时序海冰厚度提供基础和参考。结果表明,4种算法估算的海冰厚度空间分布较为一致,但不同算法估算的结果差异较大,可达0.476 m;4种算法估算结果大小依次为Laxon03算法、Yi11算法、Laxon13算法、Kurtz09算法;4种算法估算的平均海冰厚度差异,在北极波弗特海海域最大,其次是北极中心海域、格陵兰和挪威海;Laxon13算法估算结果相对于IceBridge观测结果与其他算法相比,具有最小的平均偏差和均方根误差,是卫星测高估算海冰厚度的最优算法。Abstract: Sea ice thickness is an important parameter and indicator of climate change, sensitive to ecosystem in Polar Regions. For accurate forecasting of climate change, sea ice mass balance, ocean circulation and sea-atmosphere interactions, it is required to have long term records of sea ice thickness. Satellite altimetry provide useful technology for obtaining time series sea ice thickness information on hemispheric scale. So far, four mainstream algorithms based on satellite altimeter data have been used to estimate sea ice thickness effectively. Different algorithms and parameter values as selected by different researchers will lead to results unsuitable for comparison and large uncertainties. To solve this problem, this study compared sea ice thickness over the Arctic research area retrieved from these four mainstream algorithms based on CryoSat-2 satellite altimeter data. Our results demonstrate that: (1) when compared to each other, the retrieved mean sea ice thickness estimated from these four algorithms have similar spatial distribution, but with larger difference in the value, up to 0.476 m;(2) the sequence of estimated sea ice thickness for the Arctic spatial average based on four algorithms is Laxon03 algorithm, Yi11 algorithm, Laxon13 algorithm and Kurtz09 algorithm;(3) the difference of the mean sea ice thickness from these four algorithms was higher in Beaufort Sea than in Central Arctic or Greenland Sea;(4) The Laxon13 algorithm was the optimal algorithm, with the minimum bias and RMSE when compared to IceBridge sea ice thickness measurements. These results can provide useful reference and basis for further study to improve algorithms, so as to quantify dynamic changes of sea ice thickness more accurately.
-
Keywords:
- sea ice thickness /
- satellite altimeter /
- optimal algorithm /
- CryoSat-2 /
- IceBridge
-
-
[1] IPCC. Climate Change 2013: the Physical Science Basis [M/OL]. http://www.ipcc.ch/report/ar5/wgl, 2013 [2] Bourke R H, Garrett R P. Sea Ice Thickness Distribution in the Arctic Ocean [J]. Cold Regions Science and Technology, 1987, 13: 259-280 [3] Hudson R. Annual Measurement of Sea-Ice Thickness Using an Upward-Looking Sonar [J]. Nature, 1990, 344(6262): 135-137 [4] Shimoda H, Endoh T, Muramoto K, et al. Observations of Sea-Ice Conditions in the Antarctic Coastal Application of Remote Sensing to the Estimation of Sea-Ice Thickness Distribution Region Using Ship-Board Video Cameras [J]. Antarctic Record, 1997, 41(1): 355-365 [5] Haas C. Evaluation of Ship-Based Electromagnetic-Inductive Thickness Measurements of Summer Sea-Ice in the Bellingshausen and Amundsen Seas Antarctica [J]. Cold Regions Science and Technology, 1998, 27: 1-16 [6] Laxon S, Peacock N, Smith D. High Interannual Variability of Sea Ice in the Arctic Region [J]. Nature, 2003, 425(6961): 947-950 [7] Kwok R, Zwally H J, Yi D. ICESat Observations of Arctic Sea Ice: A First Look [J]. Geophysical Research Letters, 2004, 31(16): L16401 [8] Kwok R, Cunningham G F. ICESat over Arctic Sea Ice: Estimation of Snow Depth and Ice Thickness [J]. Journal of Geophysical Research, 2008, 113: C08010 [9] Kurtz N T, Markus T, Cavalieri D J, et al. Estimation of Sea Ice Thickness Distributions Through the Combination of Snow Depth and Satellite Laser Altimetry Data [J]. Journal of Geophysical Research, 2009, 14(C10): C10007 [10] Kurtz N T, Markus T, Cavalieri D J, et al. Comparison of ICESat Data with Airborne Laser Altimeter Measurements over Arctic Sea-Ice[J]. IEEE Transations on Geoscience and Remote Sensing,2008,40(7):1 913-1 924 [11] Yi D, Zwally H J, Robbins J W. ICESat Observations of Seasonal and Interannual Variations of Sea-Ice Freeboard and Estimated Thickness in the Weddell Sea Antarctica (2003-2009) [J]. Annals of Glaciology, 2011, 52(9): 43-51 [12] Kurtz N T, Markus T. Satellite Observations of Antarctic Sea Ice Thickness and Volume [J]. Journal of Geophysical Research: Oceans (1978-2012), 2012, 117(C8): C08025 [13] Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 Estimates of Arctic Sea Ice Thickness and Volume [J]. Geophysical Research Letters, 2013, 40: 732-737 [14] Kern S, Khvorostovsky K, Skourup H, et al. About Uncertainties in Sea Ice Thickness Retrieval from Satellite Radar Altimetry: Results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise [J]. The Cryosphere Discussions, 2014, 8(2): 1 517-1 561 [15] Ricker R, Hendricks S, Helm V, et al. Sensitivity of CryoSat-2 Arctic Sea-Ice Volume Trends on Radar-Waveform Interpretation [J]. The Cryosphere, 2014, 8(2): 1 831-1 871 [16] Kwok R. Satellite Remote Sensing of Sea-Ice Thickness and Kinematics: A Review[J]. Journal of Glaciology, 2010, 56(200): 1 129-1 140 [17] Warren S G, Rigor R G, Untersteiner N, et al. Snow Depth on Arctic Sea Ice [J]. Journal of Climate, 1999, 12(6): 1 814-1 829 [18] Farrell S L, Kurtz N, Connor L N, et al. A First Assessment of Icebridge Snow and Ice Thickness Data over Arctic Sea Ice [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2 098-2 111 [19] Spreen G, Kern S, Stammer D, et al. Fram Strait Sea Ice Volume Export Estimated Between 2003 and 2008 from Satellite Data[J]. Geophysical Research Letters, 2009, 36(19):L19502 -
期刊类型引用(11)
1. 赵涛,叶世榕,罗歆琪,夏朋飞. GNSS-IR潮位反演中高仰角数据质量控制方法. 武汉大学学报(信息科学版). 2024(01): 68-76 . 百度学术
2. 肖倩雨,周春霞,刘勇. 利用改进的亮温日较差法探测格陵兰冰盖表面融化. 武汉大学学报(信息科学版). 2024(10): 1931-1939 . 百度学术
3. 李荣兴,何美茜,葛绍仓,程远,安璐. 东南极历史冰流速过估改正. 武汉大学学报(信息科学版). 2023(10): 1661-1669 . 百度学术
4. 张冕,张春灌,赵敏,钟振华,袁炳强,周磊,韩梅. 地球磁异常EMAG2v3与全球重力数据库V29数据质量综合评估——以北极地区Aegir脊为例. 物探与化探. 2023(06): 1410-1416 . 百度学术
5. 张金辉,李姗姗,杨光,范雕,凌晴. 联合CTD、海底地形和ARGO数据构建北太平洋深海时变温度模型. 测绘通报. 2023(12): 94-101+126 . 百度学术
6. 徐天河,穆大鹏,闫昊明,郭金运,尹鹏. 近20年海平面变化成因研究进展及挑战. 测绘学报. 2022(07): 1294-1305 . 百度学术
7. 徐天河,杨元元,穆大鹏,尹鹏. 近海海平面变化成因分析. 武汉大学学报(信息科学版). 2022(10): 1750-1757 . 百度学术
8. 陈旭升,张云龙,张冠军. 优化局部均值分解在趋势信息提取中的应用. 测绘科学. 2022(11): 32-39 . 百度学术
9. 房婷婷,付广裕. 卫星重力与地球重力场的文献计量分析. 地球科学进展. 2021(05): 543-552 . 百度学术
10. 冯哲颖,岳林蔚,沈焕锋. 基于多源水文数据融合的GRACE水储量精度校正. 遥感技术与应用. 2021(03): 605-617 . 百度学术
11. 刘冰石,邹贤才. ENSO影响下的西太平洋地区海陆水储量变化分析. 武汉大学学报(信息科学版). 2019(09): 1296-1303 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 1515
- HTML全文浏览量: 71
- PDF下载量: 595
- 被引次数: 22