联合卫星重力、卫星测高和海洋资料研究全球海平面变化

张保军, 王泽民

张保军, 王泽民. 联合卫星重力、卫星测高和海洋资料研究全球海平面变化[J]. 武汉大学学报 ( 信息科学版), 2015, 40(11): 1453-1459. DOI: 10.13203/j.whugis20150230
引用本文: 张保军, 王泽民. 联合卫星重力、卫星测高和海洋资料研究全球海平面变化[J]. 武汉大学学报 ( 信息科学版), 2015, 40(11): 1453-1459. DOI: 10.13203/j.whugis20150230
ZHANG Baojun, WANG Zemin. Global Sea Level Variations Estimated from Satellite Altimetry, GRACE and Oceanographic Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1453-1459. DOI: 10.13203/j.whugis20150230
Citation: ZHANG Baojun, WANG Zemin. Global Sea Level Variations Estimated from Satellite Altimetry, GRACE and Oceanographic Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1453-1459. DOI: 10.13203/j.whugis20150230

联合卫星重力、卫星测高和海洋资料研究全球海平面变化

基金项目: 南北极环境综合考察与评估专项基金资助项目(CHINARE2015-02-02);测绘地理信息公益性行业科研专项基金资助项目(201412009)。
详细信息
    作者简介:

    张保军,博士生,主要从事卫星大地测量研究。E-mail:bjzhang@whu.edu.cn

    通讯作者:

    王泽民,教授,博士。E-mail:zmwang@whu.edu.cn

  • 中图分类号: P228.41

Global Sea Level Variations Estimated from Satellite Altimetry, GRACE and Oceanographic Data

Funds: The Chinese Polar Environment Comprehensive Investigation and Assessment Program, No. CHINARE2015-02-02;the Special Scientific Research and Public Service Fund of Surveying, Mapping and Geoinformation, No.201412009.
  • 摘要: 利用GRACE、卫星测高和海洋实测温盐数据,探讨了2003~2012年间全球海平面、比容海平面和海水质量等的变化特征,并讨论了南极冰盖和格陵兰冰盖消融对全球海平面变化的影响。全球海平面整体呈上升趋势,上升速度为2.72±0.07 mm/a,且存在显著的空间分布特征。全球海平面、比容海平面和海水质量等的变化还具有显著的季节性特征,其中全球海平面变化的年周期振幅为4.6±0.3 mm。使用经验正交函数分析(EOF)得到全球海平面和比容海平面的季节性变化在南北半球存在显著的差异,但海水质量季节性变化不存在这种差异。南极冰盖和格陵兰冰盖的消融速率分别为-75.7±12.3 Gt/a和-124.1±2.9 Gt/a,对海平面的长期趋势项贡献分别为0.21±0.03 mm/a和0.34±0.01 mm/a,仅占全球海水质量增加速度1.80±0.10 mm/a的12%和19%,总计占31%,因此,两极冰盖质量消融并不是2003-2012年间海水质量增加的最主要因素。
    Abstract: In this paper, global sea level variations and the influence on the sea level rise from Antarctic ice sheet and Greenland ice sheet ablation from 2003 to 2012 are estimated from satellite altimetry, GRACE and oceanographic data. From 2003 to 2012, global sea level rose with the rate at 2.72±0.07 mm/a and spatial distribution characteristics estimated from altimetry. Ocean mass changes estimated from GRACE accounted for 66% of the sea level change, with the rate at 1.80±0.10mm/a, and steric sea level changes accounted for 34% of the sea level change with the rate at 0.93±0.05 mm/a estimated from Argo and accounted for 19% of the sea level change with the rate at 0.51±0.03 mm/a estimated from Ishii. Meanwhile, global sea level, steric sea level and oceanic mass variations had significant seasonal characteristics, with the annual cycle amplitude 4.6±0.3 mm, 4.1±0.2 mm, 3.6±0.1 mm and 7.3±0.4 mm, respectively, estimated from altimetry, Argo, Ishii and GRACE. Using empirical orthogonal function (EOF) analysis, we found significant seasonal differences existed between the northern and southern hemispheres in global sea level, steric sea level, but did not exist in oceanic mass changes. The rates of Antarctica ice sheet and Greenland ice sheet ablation were -75.7±12.3 Gt/a and -124.1±2.9 Gt/a from 2003 to 2012, respectively. And the correspondent global sea level rising rates were 0.21±0.03 mm/a, 0.34±0.01 mm/a, which can only accounted for 12% and 19%, total up to only 31% of the ocean mass increase. So the melting of the polar ice sheet was not the most important factor in the increase of ocean mass from 2003 to 2012.
  • [1] Chen J, Wilson C, Tapley B, et al. Seasonal Global Mean Sea Level Change from Satellite Altimeter, GRACE, and Geophysical Models[J]. Journal of Geodesy,2005, 79(9):532-539
    [2] Willis J K, Chambers D P, Nerem R S. Assessing the Globally Averaged Sea Level Budget on Seasonal to Interannual Time Scales[J]. J Geophys Res, 2008, 113, C06015
    [3] Vinogradov S V, Ponte R M, Heimbach P, et al.The Mean Seasonal Cycle in Sea Level Estimated from a Data-Constrained General Circulation Model [J]. J Geophys Res, 2008, 113, C03032
    [4] García D, Chao B F, Río J D, et al. On the Steric and Mass-Induced Contributions to the Annual Sea Level Variations in the Mediterranean Sea [J]. J Geophys Res, 2006, 111: C09030
    [5] Feng Wei, Zhong Min, Xu Houze.Global Sea Level Changes Estimated from Satellite Altimetry, Satellite Gravimetry and Argo Data During 2005-2013[J].Progressing in Geophysics, 2014,29(2):471- 477(冯伟, 钟敏, 许厚泽.联合卫星测高、卫星重力和海洋浮标资料研究2005-2013年全球海平面变化[J].地球物理学进展, 2014, 29(2):471-477)
    [6] Cheng M K, Tapley B D, Ries J C. Deceleration in the Earth's Oblateness [J]. J Geophys Res, 2013, 118(2):740-747
    [7] Cheng M K, Ries J C, Tapley B D. Geocenter Variations from Analysis of SLR Data, in Reference Frames for Applications in Geosciences [J]. International Association of Geodesy Symposia, 2013, 138: 19-25
    [8] Swenson S, Wahr J. Post-Processing Removal of Correlated Errors in GRACE Data [J]. Geophys Res Lett, 2006, 33: L08402
    [9] Chen J L, Wilson C R, Tapley B D, et al. GRACEDetects Coseismic and Postseismic from the Sumatra-Andaman Earthquake [J]. Geophys Res Lett, 2007, 34: L13302
    [10] Wahr J, Molenaar M. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE [J]. J Geophys Res, 1998, 103 (B12): 30 205-30 229
    [11] Flechtner F, Dobslaw H, Fagiolini E. AOD1B Product Description Document for Product Release 05[R]. GFZ German Research Centre for Geosciences Department 1: Geodesy and Remote Sensing, Germany, 2014
    [12] Wessel P, Smith W H F. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database [J]. J Geophys Res, 1996, 101: 8 741-8 743
    [13] Chambers D. Observing Seasonal Steric Sea Level Variations with GRACE and Satellite Altimetry [J]. J Geophys Res, 2006, 111(C3):C03010
    [14] Hosoda S, Ohira T, Nakamura T.A Monthly Mean Dataset of Global Oceanic Temperature and Salinity Derived from Argo Float Observations [J]. Jamstec Rep Res Dev, 2008, 8: 47-59
    [15] Ishii M, Kimoto M. Reevaluation of Historical Ocean Heat Content Variations with Time-Varying XBT and MBT Depth Bias Corrections [J]. Journal of Oceanography, 2009, 65(3):287-299
    [16] Douglas B, Peltier W. The Puzzle of Global Sea-Level Rise [J]. Physics Today, 2002, 55(3): 35-41
    [17] Jiang Min, Zhong Min, Zhang Zizhan, et al. Influence of GIA on Ocean Mass Variations [J]. Geomatics and Information Science of Wuhan University, 2013, 38(10):1 188-1 191(江敏, 钟敏, 张子占, 等. 冰川均衡调整对全球水质量变化的影响[J]. 武汉大学学报·信息科学版, 2013, 38(10): 1 188-1 191)
    [18] Lombard A, Garcia D, Ramillien G, et al. Estimation of Steric Sea Level Variations from Combined GRACE and Jason-1 Data[J]. Earth and Planetary Science Letters, 2007,254(12):194-202
    [19] Wen Hanjiang, Li Hongchao, Cai Yanhui, et al. The Study of Global Sea Level Change by Combining Argo Floats Data, Satellite Altimetry and GRACE Observations[J]. Acta Geodeatica et Cart- ographica Sinica,2012,41(5):696-702 (文汉江,李洪超, 蔡艳辉, 等. 联合Argo浮标、卫星测高和GRACE数据研究海平面变化[J].测绘学报,2012,41(5):696-702)
    [20] Quinn K J, Ponte R M. Uncertainty in Ocean Mass Trends from GRACE [J]. Geophys J Int, 2010, 181:762-768
    [21] Paulson A, Zhong S, Wahr J.Inference of Mantle Viscosity from GRACE and Relative Sea Level Data [J]. Geophys J Int, 2007,171: 497-508
    [22] Luo Zhicai, Li Qiong, Zhang Kun, et al. Trend of Mass Change in the Antarctic Ice Sheet Recovered from the GRACE Temporal Gravity Field[J]. Sci China: Earth Sci, 2012, 55: 76-82 (罗志才, 李琼, 张坤, 等.利用GRACE时变重力场反演南极冰盖的质量变化趋势[J].中国科学:地球科学, 2012,42(10):1 590-1 596)
    [23] Baur O. Greenland Mass Variation from Time-Variable Gravity in the Absence of GRACE [J]. Geophy J Lett, 2013, 40:4 289-4 293
    [24] Groh A, Gruber C, Fagiolini E, et al. Ice-Mass Changes Inferred from Global and Regional GRACE Solutions[C]. AGU Fall Meeting Abstracts, San Francisco, USA, 2014
    [25] Wouters B, Chambers D, Schrama E J O. GRACE Observes Small-Scale Mass Loss in Greenland[J]. Geophysical Research Letters, 2008, 35(20): 295-296
  • 期刊类型引用(11)

    1. 赵涛,叶世榕,罗歆琪,夏朋飞. GNSS-IR潮位反演中高仰角数据质量控制方法. 武汉大学学报(信息科学版). 2024(01): 68-76 . 百度学术
    2. 肖倩雨,周春霞,刘勇. 利用改进的亮温日较差法探测格陵兰冰盖表面融化. 武汉大学学报(信息科学版). 2024(10): 1931-1939 . 百度学术
    3. 李荣兴,何美茜,葛绍仓,程远,安璐. 东南极历史冰流速过估改正. 武汉大学学报(信息科学版). 2023(10): 1661-1669 . 百度学术
    4. 张冕,张春灌,赵敏,钟振华,袁炳强,周磊,韩梅. 地球磁异常EMAG2v3与全球重力数据库V29数据质量综合评估——以北极地区Aegir脊为例. 物探与化探. 2023(06): 1410-1416 . 百度学术
    5. 张金辉,李姗姗,杨光,范雕,凌晴. 联合CTD、海底地形和ARGO数据构建北太平洋深海时变温度模型. 测绘通报. 2023(12): 94-101+126 . 百度学术
    6. 徐天河,穆大鹏,闫昊明,郭金运,尹鹏. 近20年海平面变化成因研究进展及挑战. 测绘学报. 2022(07): 1294-1305 . 百度学术
    7. 徐天河,杨元元,穆大鹏,尹鹏. 近海海平面变化成因分析. 武汉大学学报(信息科学版). 2022(10): 1750-1757 . 百度学术
    8. 陈旭升,张云龙,张冠军. 优化局部均值分解在趋势信息提取中的应用. 测绘科学. 2022(11): 32-39 . 百度学术
    9. 房婷婷,付广裕. 卫星重力与地球重力场的文献计量分析. 地球科学进展. 2021(05): 543-552 . 百度学术
    10. 冯哲颖,岳林蔚,沈焕锋. 基于多源水文数据融合的GRACE水储量精度校正. 遥感技术与应用. 2021(03): 605-617 . 百度学术
    11. 刘冰石,邹贤才. ENSO影响下的西太平洋地区海陆水储量变化分析. 武汉大学学报(信息科学版). 2019(09): 1296-1303 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  1329
  • HTML全文浏览量:  70
  • PDF下载量:  795
  • 被引次数: 22
出版历程
  • 收稿日期:  2015-04-20
  • 发布日期:  2015-11-04

目录

    /

    返回文章
    返回