-
摘要: 三维激光扫描点云在建筑物场景配准中存在同名特征难以区分、投票匹配算法复杂度高等问题。为此,提出了一种基于平面基元组的建筑物场景点云自动配准方法。平面基元组被定义为具有近似相同法向量的点云面集合。该方法从点云中提取平面基元,根据平面法向量方向,划分平面基元组,然后借助基元组搜索同名平面,利用单位四元数法估计转换参数。实验结果表明,该方法适用于建筑物场景,能够实现点云的自动配准。Abstract: In this paper, we present an automatic registration method based on planar primitive groups for building point clouds. This method distinguishes planar features with similar structures found in urban scenes, and reduces feature matching search complexity. In the method, planar patches with similar normal vectors are defined as a planar primitive group. We extract planes from point clouds as planar primitives. Using a threshold, we cluster the planar primitives with the similar normal vectors into groups. Finally, we match the planar primitives in groups, and calculate transformation parameters with an extended quaternion method. Experimental results show that this method is effective for automatic registration of building point clouds.
-
Keywords:
- building /
- plane extraction /
- hierarchical clustering /
- planar primitive group /
- point clouds registration /
- RANSAC
-
-
-
[1] 张剑清,翟瑞芳,郑顺义.激光扫描多三维视图的全自动无缝镶嵌[J].武汉大学学报·信息科学版, 2007, 32(2):100-103 http://ch.whu.edu.cn/CN/abstract/abstract1834.shtml Zhang Jianqing, Zhai Ruifang, Zheng Shunyi. Automatic Seamless Registration of 3D Multiple Range Views[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2):100-103 http://ch.whu.edu.cn/CN/abstract/abstract1834.shtml
[2] Besl P J, McKay N D. A Method for Registration of 3-d Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2):239-256 doi: 10.1109/34.121791
[3] Jost T, Hugli H. A Multi-resolution Scheme ICP Algorithm for Fast Shape Registration[C]. First International Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy,2002
[4] Trucco E, Fusiello A, Roberto V. Robust Motion and Correspondences of Noisy 3D Point Sets with Missing Data[J]. Pattern Recogniton, Letters, 1999, 20(9):889-898 doi: 10.1016/S0167-8655(99)00055-0
[5] Zinsser T, Schnidt H, Niermann J. A Refined ICP Algorithm for Robust 3D Correspondences Estimation[C]. International Conference in Image Processing, Barcelona, Spain, 2003
[6] Chow C, Tsui H, Lee T. Surface Registration Using a Dynamic Genetic Algorithm[J]. Pattern Recogniton, 2004, 37(1):105-117 doi: 10.1016/S0031-3203(03)00222-X
[7] 郑莉, 张剑清, 罗跃军. 多视结构光点云的自动无缝拼接[J].武汉大学学报·信息科学版,2009,34(2):199-202 http://ch.whu.edu.cn/CN/abstract/abstract1183.shtml Zheng Li, Zhang Jianqing, Luo Yuejun. Close Multi-view Metrical Data Registration[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2):199-202 http://ch.whu.edu.cn/CN/abstract/abstract1183.shtml
[8] Johnson A. Spin-images:A Representation for 3-d Surface Matching[D]. USA:Carnegie Mellon University, 1997
[9] Chua C. Point Signatures:A New Representation for 3d Object Recognition[J]. International Journal of Computer Vision, 1997, 25(1):63-85 doi: 10.1023/A:1007981719186
[10] Gelfand N, Mitra N J, Guibas L J, et al. Robust Global Registration[C]. Symposium on Geometry Processing, Vienna, Austria, 2005
[11] 王永波,杨化超,刘燕华,等. 线状特征约束下基于四元数描述的LiDAR点云配准方法[J]. 武汉大学学报·信息科学版, 2013, 38(9):1057-1062 http://ch.whu.edu.cn/CN/abstract/abstract2751.shtml Wang Yongbo, Yang Huachao, Liu Yanhua, et al. Linear-Feature-Constrained Registration of LiDAR Point Cloud via Quaternion[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9):1057-1062 http://ch.whu.edu.cn/CN/abstract/abstract2751.shtml
[12] Aiger D, Niloy M, Cohen-Or D. 4-Points Congruent Sets for Robust Pairwise Surface Registration[J]. ACM Transactions on Graphics, 2008, 27(3):85-94 http://cn.bing.com/academic/profile?id=2064499898&encoded=0&v=paper_preview&mkt=zh-cn
[13] Weinmann M, Weinmann M, Hinz S, et al. Fast and Automatic Image-based Registration of TLS Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6):S62-S70 doi: 10.1016/j.isprsjprs.2011.09.010
[14] Theiler P W, Schindler K. Automatic Registration of Terrestrial Laser Scanner Point Clouds Using Natural Planner Surfaces[C]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 2012 http://cn.bing.com/academic/profile?id=1967186435&encoded=0&v=paper_preview&mkt=zh-cn
[15] He W, Ma W, Zha H. Automatic Registration of Range Images Based on Correspondence of Complete Plane Patches[C]. International Conference on 3D Digital Imaging and Modeling, Ottawa, Canada, 2005
[16] Schnabel R, Wahl R, Klein R. Efficient RANSAC for Point-Cloud Shape Detection[J]. Computer Graphics Forum, 2007, 26(2):214-226 doi: 10.1111/cgf.2007.26.issue-2
[17] Nurunnabi A, West G, Belton D. Outlier Detection and Robust Normal-curvature Estimation in Mobile Laser Scanning 3D Point Cloud Data[J]. Pattern Recognition, 2015, 48(4):1404-1419 doi: 10.1016/j.patcog.2014.10.014
[18] Pathak K, Birk A, Vaskevicius N, et al. Fast Registration Based on Noisy Planes with Unknown Correspondences for 3-D Mapping[J]. IEEE Transactions on Robotics, 2010, 26(3):424-441 doi: 10.1109/TRO.2010.2042989
[19] 王力,李广云,张启福,等. 激光扫描中平面拟合及坐标转换模型构建[J]. 测绘科学技术学报, 2012, 29(2):101-104 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201202005.htm Wang Li, Li Guangyun, Zhang Qifu, et al. Plane Fitting and Transformation in Laser Scanning[J]. Journal of Geomatics Science and Technology, 2012, 29(2):101-104 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201202005.htm
[20] 杨伟,刘春,刘大杰. 激光扫描数据三维坐标转换的精度分析[J]. 工程勘察, 2004, 3:61-63 http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200403018.htm Yang Wei, Liu Chun, Liu Dajie. Accuracy Analysis of Laser Scanning Data Coordinate Transformation[J]. Geotechnical Investigation and Surveying, 2004, 3:61-63 http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200403018.htm
[21] 徐源强,高井祥,张丽,等. 地面三维激光扫描的点云配准误差研究[J]. 大地测量与地球动力学, 2011, 31(2):129-132 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201102030.htm Xu Yuangqiang, Gao Jingxiang, Zhang Li, et al. Research on Point Cloud Registration Error of Terrestrial Laser Scanning[J]. Journal of Geodesy and Geodynamics, 2011, 31(2):129-132 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201102030.htm
-
期刊类型引用(10)
1. 曾广泉,马韬,张孟希,戴妍,陈凯文,丁继辉,俞双恩,王中文. 基于无人机多光谱影像的不同施氮量水稻LAI反演方法研究. 江苏农业科学. 2024(20): 41-48 . 百度学术
2. 高钰琪,许桂玲,冯跃华,王晓珂,任红军,由晓璇,韩志丽,李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究. 中国稻米. 2023(05): 38-44 . 百度学术
3. 彭晓伟,张爱军,王楠,赵丽,杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息. 2022(01): 32-39 . 百度学术
4. 王晓珂,刘婷婷,许桂玲,冯跃华,彭金凤,李杰,罗强鑫,韩志丽,卢苇,PHONENASAY Somsana. 基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型. 中国稻米. 2021(03): 21-29 . 百度学术
5. 王浩淼,宋苗语,李翔,扈朝阳,鲁任翔,王翔,马会勤. 无人机高光谱遥感监测葡萄长势与缺株定位. 园艺学报. 2021(08): 1626-1634 . 百度学术
6. 刘雅婷,龚龑,段博,方圣辉,彭漪. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测. 武汉大学学报(信息科学版). 2020(02): 265-272 . 百度学术
7. 陈晓凯,李粉玲,王玉娜,史博太,侯玉昊,常庆瑞. 无人机高光谱遥感估算冬小麦叶面积指数. 农业工程学报. 2020(22): 40-49 . 百度学术
8. 落莉莉,常庆瑞,武旭梅,杨景,李粉玲,王琦. 夏玉米叶片光合色素含量高光谱估算. 干旱地区农业研究. 2019(04): 178-183 . 百度学术
9. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 . 百度学术
10. 李亚妮,鲁蕾,刘勇. 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报. 2017(12): 3976-3984 . 百度学术
其他类型引用(17)