-
摘要: 载体运动速度和加速度的精确确定是航空重力中的关键问题之一。基于IGS发布的精密轨道和钟差产品,并对各种相关误差精确模型化,利用载波相位直接法计算速度和加速度。在静态条件下,水平方向的速度精度优于1.5 mm/s,加速度精度优于2.0 mm/s2;垂直方向的速度精度约为2.0 mm/s,加速度精度约为2.5 mm/s2。在动态条件下,与多参考站载波相位直接法精度相当,并且计算效率和解算成功率更高。结果表明了本文方法在航空重力中的有效性。Abstract: Precise velocity and acceleration is one of the key problems in airborne gravimetry. In this paper, a carrier phase-based velocity and acceleration determination method with precise orbit and clock products is introduced. In static case, the horizontal velocity and acceleration are better than 1.5 mm/s and 2.0 mm/s2, respectively, and the vertical ones are about 2.0 mm/s and 2.5 mm/s. In kinematic case, this method is comparable with the multi-reference stations method in precision, and has a higher computational efficiency and success rates. Meanwhile, the sampling rate of precise clock products only influences the velocity, and the order is lower than 1 mm/s. It turns out that the method presented here is effective in airborne gravimetry.
-
Keywords:
- precise ephemeris /
- precise clock /
- carrier phase /
- velocity /
- acceleration
-
-
表 1 静态实验速度和加速度结果统计
Table 1 Statistics of Velocity and Acceleration in Static Test
速度/(mm\5s-1) 加速度/(mm\5s-2) N E U N E U 均值 PPVA -0.026 9 0.008 2 -0.026 9 -0.004 3 0.005 0 -0.004 0 EVA -0.020 1 0.020 1 -0.007 8 -0.002 7 0.005 6 -0.006 3 RMS PPVA 0.908 1 1.305 1 2.044 2 1.232 9 1.701 8 2.491 5 EVA 0.950 2 1.294 5 1.672 7 1.348 6 1.835 8 2.365 4 表 2 静态实验加速度结果统计/mGal
Table 2 Statistics of Acceleration in Static Test/mGal
30 s 60 s 90 s 120 s 均值 RMS 均值 RMS 均值 RMS 均值 RMS U 0.03 7.4 0.03 2.6 0.02 1.50 0.02 1.22 PPVA E 0.58 3.9 0.56 1.6 0.54 1.09 0.49 0.98 N -0.22 2.4 -0.21 0.9 -0.20 0.59 -0.18 0.51 U 0.62 3.7 -0.60 2.1 -0.57 1.44 0.52 1.23 EVA E 0.56 3.5 0.54 1.8 0.51 1.21 0.46 1.04 N -0.27 2.2 -0.26 1.1 -0.24 0.79 -0.22 0.71 表 3 选择不同参考站的解算成功率统计
Table 3 Statistics of Success Rate with Different Reference Stations
参考站 参考站的选择 MSSC 0009 BVHS BVHS和0009 MSSC和BVHS MSSC和0009 MSSC、BVHS和0009 解算成功率/% 92.5 94.9 94.9 94.0 91.7 91.7 90.8 表 4 动态实验速度和加速度差分结果统计
Table 4 Statistics of Velocity and Acceleration Difference in Kinematic Test
速度/(mm\5s-1) 加速度/(mm\5s-2) N E U N E U 均值 0.014 0 -0.055 6 0.019 7 -0.002 5 -0.000 5 -0.001 5 标准差 1.307 0 1.432 6 3.272 8 1.656 8 1.797 9 4.011 3 表 5 动态实验加速度差值统计/mGal
Table 5 Statistics of Acceleration Difference in Kinematic Test/mGal
30 s 60 s 90 s 120 s 均值 标准差 均值 标准差 均值 标准差 均值 标准差 U -0.15 9.48 -0.15 4.14 -0.15 2.90 -0.14 2.63 E -0.05 4.79 -0.05 2.13 -0.05 1.44 -0.05 1.29 N -0.25 4.33 -0.25 1.75 -0.25 1.19 -0.24 1.07 -
[1] Bruton A M. Improving the Accuracy and Resolution of SINS/DGPS Airborne Gravimetry[D]. Calgary: The University of Calgary, 2000 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.2681
[2] 张开东.基于SINS/DGPS的航空重力测量方法研究[D].长沙:国防科技大学, 2007 http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098727.htm Zhang Kaidong. Research on the Method of Airborne Gravimetry Based on SINS/DGPS[D]. Changsha: National University of Defense Technology, 2007 http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098727.htm
[3] Bruton A M, Glennie C L, Schwarz K P. Differentiation for High-percision GPS Velocity and Acceleration Determination[J].GPS Solutions, 1999, 2(4): 7-21 doi: 10.1007/PL00012771
[4] Jekeli C. On the Computation of Vehicle Accelerations Using GPS Phase Accelerations[C].The International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS94), Banff, Canada, 1994
[5] Jekeli C, Garcia R. GPS Phase Accelerations for Moving-base Vector Gravimetry[J].Journal of Geodesy, 1997, 71(10): 630-639 doi: 10.1007/s001900050130
[6] Kennedy S. Acceleration Estimation from GPS Carrier Phases for Airborne Gravimetry[D]. Calgary: The University of Calgary, 2002
[7] Salazar D, Hernandez-Pajares M, Juan J, et al. EVA: GPS-based Extended Velocity and Acceleration Determination[J].Journal of Geodesy, 2011, 85(12): 329-340
[8] 肖云, 夏哲仁.航空重力测量中载体运动加速度的确定[J].地球物理学报, 2003, 46(1): 62-67 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200301010.htm Xiao Yun, Xia Zheren. Determination of Moving-Base Acceleration in Airborne Gravimetry[J].Chinese Journal of Geophysics, 2003, 46(1): 62-67 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200301010.htm
[9] Salazar D, Hernandez-Pajares M, Juan J, et al. Network-based High Accuracy Positioning with the GPSTk[C]. The 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVI TEC' 2010), Noordwijk, Netherlands, 2010
[10] Zhang Jianjun. Precise Velocity and Acceleration Determination Using a Standalone GPS Receiver in Real Time[D]. Melbourne: Royal Melbourne Institute of Technology, 2007 https://researchbank.rmit.edu.au/view/rmit:9492
[11] Kouba J.A Guide to Using International GNSS Service (IGS) Products[OL]. http//igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf,2011
[12] 王甫红, 张小红, 黄劲松. GPS单点测速的误差分析及精度评价[J].武汉大学学报·信息科学版, 2007, 32(6): 515-519 http://ch.whu.edu.cn/CN/Y2007/V32/I6/515 Wang Fuhong, Zhang Xiaohong, Huang Jinsong. Error Analysis and Accuracy Assessment of GPS Absolute Velocity Determination with SA off[J].Geomatics and Information Science of Wuhan University, 2007, 32(6):515-519 http://ch.whu.edu.cn/CN/Y2007/V32/I6/515
-
期刊类型引用(0)
其他类型引用(1)