精密单点确定航空重力载体运动速度和加速度

匡开发, 王腾, 王峥, 周剑

匡开发, 王腾, 王峥, 周剑. 精密单点确定航空重力载体运动速度和加速度[J]. 武汉大学学报 ( 信息科学版), 2017, 42(3): 299-303. DOI: 10.13203/j.whugis20140654
引用本文: 匡开发, 王腾, 王峥, 周剑. 精密单点确定航空重力载体运动速度和加速度[J]. 武汉大学学报 ( 信息科学版), 2017, 42(3): 299-303. DOI: 10.13203/j.whugis20140654
KUANG Kaifa, WANG Teng, WANG Zheng, ZHOU Jian. Determination of Precise Absolute Velocity and Acceleration Airborne Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 299-303. DOI: 10.13203/j.whugis20140654
Citation: KUANG Kaifa, WANG Teng, WANG Zheng, ZHOU Jian. Determination of Precise Absolute Velocity and Acceleration Airborne Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 299-303. DOI: 10.13203/j.whugis20140654

精密单点确定航空重力载体运动速度和加速度

基金项目: 

国家973计划 2013CB733301

国家863计划 2013AA122502

国家自然科学基金 41210006

国家自然科学基金 41374022

详细信息
    作者简介:

    匡开发, 博士生, 主要从事航空重力数据处理的理论与方法研究。kfkuang@whu.edu.cn

  • 中图分类号: P631

Determination of Precise Absolute Velocity and Acceleration Airborne Gravimetry

Funds: 

The Major State Basic Research Development Program of China (973 Program) 2013CB733301

the National High Technology Research and Development Program of China (863 Program) 2013AA122502

the National Natural Science Foundation of China 41210006

the National Natural Science Foundation of China 41374022

More Information
    Author Bio:

    KUANG Kaifa, PhD candidate, specializes in data processing in airborne gravimetry. E-mail:kfkuang@whu.edu.cn

  • 摘要: 载体运动速度和加速度的精确确定是航空重力中的关键问题之一。基于IGS发布的精密轨道和钟差产品,并对各种相关误差精确模型化,利用载波相位直接法计算速度和加速度。在静态条件下,水平方向的速度精度优于1.5 mm/s,加速度精度优于2.0 mm/s2;垂直方向的速度精度约为2.0 mm/s,加速度精度约为2.5 mm/s2。在动态条件下,与多参考站载波相位直接法精度相当,并且计算效率和解算成功率更高。结果表明了本文方法在航空重力中的有效性。
    Abstract: Precise velocity and acceleration is one of the key problems in airborne gravimetry. In this paper, a carrier phase-based velocity and acceleration determination method with precise orbit and clock products is introduced. In static case, the horizontal velocity and acceleration are better than 1.5 mm/s and 2.0 mm/s2, respectively, and the vertical ones are about 2.0 mm/s and 2.5 mm/s. In kinematic case, this method is comparable with the multi-reference stations method in precision, and has a higher computational efficiency and success rates. Meanwhile, the sampling rate of precise clock products only influences the velocity, and the order is lower than 1 mm/s. It turns out that the method presented here is effective in airborne gravimetry.
  • 图  1   动态实验速度和加速度结果比较

    Figure  1.   Comparison of Velocity and Acceleration in Kinematic Test

    表  1   静态实验速度和加速度结果统计

    Table  1   Statistics of Velocity and Acceleration in Static Test

    速度/(mm\5s-1)加速度/(mm\5s-2)
    NEUNEU
    均值PPVA-0.026 90.008 2-0.026 9-0.004 30.005 0-0.004 0
    EVA-0.020 10.020 1-0.007 8-0.002 70.005 6-0.006 3
    RMSPPVA0.908 11.305 12.044 21.232 91.701 82.491 5
    EVA0.950 21.294 51.672 71.348 61.835 82.365 4
    下载: 导出CSV

    表  2   静态实验加速度结果统计/mGal

    Table  2   Statistics of Acceleration in Static Test/mGal

    30 s60 s90 s120 s
    均值RMS均值RMS均值RMS均值RMS
    U0.037.40.032.60.021.500.021.22
    PPVAE0.583.90.561.60.541.090.490.98
    N-0.222.4-0.210.9-0.200.59-0.180.51
    U0.623.7-0.602.1-0.571.440.521.23
    EVAE0.563.50.541.80.511.210.461.04
    N-0.272.2-0.261.1-0.240.79-0.220.71
    下载: 导出CSV

    表  3   选择不同参考站的解算成功率统计

    Table  3   Statistics of Success Rate with Different Reference Stations

    参考站参考站的选择
    MSSC0009BVHSBVHS和0009MSSC和BVHSMSSC和0009MSSC、BVHS和0009
    解算成功率/%92.594.994.994.091.791.790.8
    下载: 导出CSV

    表  4   动态实验速度和加速度差分结果统计

    Table  4   Statistics of Velocity and Acceleration Difference in Kinematic Test

    速度/(mm\5s-1)加速度/(mm\5s-2)
    NEUNEU
    均值0.014 0-0.055 60.019 7-0.002 5-0.000 5-0.001 5
    标准差1.307 01.432 63.272 81.656 81.797 94.011 3
    下载: 导出CSV

    表  5   动态实验加速度差值统计/mGal

    Table  5   Statistics of Acceleration Difference in Kinematic Test/mGal

    30 s60 s90 s120 s
    均值标准差均值标准差均值标准差均值标准差
    U-0.159.48-0.154.14-0.152.90-0.142.63
    E-0.054.79-0.052.13-0.051.44-0.051.29
    N-0.254.33-0.251.75-0.251.19-0.241.07
    下载: 导出CSV
  • [1]

    Bruton A M. Improving the Accuracy and Resolution of SINS/DGPS Airborne Gravimetry[D]. Calgary: The University of Calgary, 2000 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.2681

    [2] 张开东.基于SINS/DGPS的航空重力测量方法研究[D].长沙:国防科技大学, 2007 http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098727.htm

    Zhang Kaidong. Research on the Method of Airborne Gravimetry Based on SINS/DGPS[D]. Changsha: National University of Defense Technology, 2007 http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098727.htm

    [3]

    Bruton A M, Glennie C L, Schwarz K P. Differentiation for High-percision GPS Velocity and Acceleration Determination[J].GPS Solutions, 1999, 2(4): 7-21 doi: 10.1007/PL00012771

    [4]

    Jekeli C. On the Computation of Vehicle Accelerations Using GPS Phase Accelerations[C].The International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS94), Banff, Canada, 1994

    [5]

    Jekeli C, Garcia R. GPS Phase Accelerations for Moving-base Vector Gravimetry[J].Journal of Geodesy, 1997, 71(10): 630-639 doi: 10.1007/s001900050130

    [6]

    Kennedy S. Acceleration Estimation from GPS Carrier Phases for Airborne Gravimetry[D]. Calgary: The University of Calgary, 2002

    [7]

    Salazar D, Hernandez-Pajares M, Juan J, et al. EVA: GPS-based Extended Velocity and Acceleration Determination[J].Journal of Geodesy, 2011, 85(12): 329-340

    [8] 肖云, 夏哲仁.航空重力测量中载体运动加速度的确定[J].地球物理学报, 2003, 46(1): 62-67 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200301010.htm

    Xiao Yun, Xia Zheren. Determination of Moving-Base Acceleration in Airborne Gravimetry[J].Chinese Journal of Geophysics, 2003, 46(1): 62-67 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200301010.htm

    [9]

    Salazar D, Hernandez-Pajares M, Juan J, et al. Network-based High Accuracy Positioning with the GPSTk[C]. The 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVI TEC' 2010), Noordwijk, Netherlands, 2010

    [10]

    Zhang Jianjun. Precise Velocity and Acceleration Determination Using a Standalone GPS Receiver in Real Time[D]. Melbourne: Royal Melbourne Institute of Technology, 2007 https://researchbank.rmit.edu.au/view/rmit:9492

    [11]

    Kouba J.A Guide to Using International GNSS Service (IGS) Products[OL]. http//igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf,2011

    [12] 王甫红, 张小红, 黄劲松. GPS单点测速的误差分析及精度评价[J].武汉大学学报·信息科学版, 2007, 32(6): 515-519 http://ch.whu.edu.cn/CN/Y2007/V32/I6/515

    Wang Fuhong, Zhang Xiaohong, Huang Jinsong. Error Analysis and Accuracy Assessment of GPS Absolute Velocity Determination with SA off[J].Geomatics and Information Science of Wuhan University, 2007, 32(6):515-519 http://ch.whu.edu.cn/CN/Y2007/V32/I6/515

  • 期刊类型引用(0)

    其他类型引用(1)

图(1)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2014-12-28
  • 发布日期:  2017-03-04

目录

    /

    返回文章
    返回