线阵推扫式相机高精度在轨几何标定

孟伟灿, 朱述龙, 曹闻, 曹彬才, 高翔

孟伟灿, 朱述龙, 曹闻, 曹彬才, 高翔. 线阵推扫式相机高精度在轨几何标定[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
引用本文: 孟伟灿, 朱述龙, 曹闻, 曹彬才, 高翔. 线阵推扫式相机高精度在轨几何标定[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
Citation: MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534

线阵推扫式相机高精度在轨几何标定

基金项目: 国家自然科学基金资助项目(41101396,41001262);地理信息工程国家重点实验室开发基金资助项目(SKLGIE2013-M-3-4)。
详细信息
    作者简介:

    孟伟灿,博士生,主要从事航天摄影测量研究。E-mail:wwss_000@163.com

  • 中图分类号: P237.3

High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras

Funds: The National Natural Science Foundation of China, Nos. 41101396, 41001262; the Open Research Fund Program of State Key Laboratory of Geographical Information Engineering, No. SKLGIE2013-M-3-4.
  • 摘要: 基于偏置矩阵和探元指向角构建了线阵推扫式相机的在轨几何标定模型,并给出了相应的参数求解方法。分析了线阵推扫式相机物理内参数模型与指向角内参数模型的区别与联系,对物理模型到指向角模型的演化过程进行了推导,分析了偏视场相机与正视场相机在使用指向角模型时的不同,并分别给出了两者的具体计算公式。利用嵩山检校场高精度控制数据和天绘一号高分影像验证了本文的模型和解法。实验结果表明,本文的标定模型和求解方法可解算出稳健可靠的内参数;两次标定结果相比,95%的样本探元沿轨方向的指向差异小于0.1像元,93%的样本探元垂轨方向的指向差异小于0.2像元。经在轨几何标定,影像定位精度显著提升。
    Abstract: An on-orbit geometric calibration model is established based on an offset matrix and direction angle model,the corresponding solution is presented in this paper. Similarities and differences between the physical distortion model and direction angle distortion model are analyzed. The direction angle distortion model in a linear push-broom camera is derived from the physical distortion model. Differences between the field central camera and field bias one are analyzed and their direction angle model formulas are separately provided. Control data from the Songshan mountain test field and a HR image from the TH-1 satellite are employed to verify this calibration model and solution. Experiments indicate that stable inner parameters can be obtained by this calibration model and solution method. Between the two calibrated inner results, 95 percent of along-track direction angle difference is less than 0.1 pixels and 93 percent of across-track direction angle difference is less than 0.2 pixels. After on-orbit geometric calibration, image positioning accuracy was significantly improved.
  • [1] Zhang Yongsheng, Gong Danchao, Liu Jun. Application of High Resolution Remote Sensing Satellite [M]. Beijing: Science Press, 2004:10-12(张永生, 巩丹超, 刘军. 高分辨率遥感卫星应用[M].北京: 科学出版社, 2004:10-12)
    [2] Ebner H, Kornus W, Strunz G, et al. Simulation Study on Point Determination Using MOMS_O2/D2 Imagery[J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(10): 1 315-1 320
    [3] Jacobsen K. Issues and Method for In-Flight and On-Orbit Calibration[C]. Workshop on Radiometric and Geometric Calibration,Gulfport, Mississippi,USA, 2003
    [4] Srivastava P K, Alurkar M S. In-Flight Calibration of IRS-1C Imaging Geometry for Data Products[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52(7): 215-221
    [5] Kornus W, Lehner M. Geometric In-Flight Calibration of the Stereoscopic CCD-Line Scanner MOMS-2P[C]. ISPRS Com I Symp, Bangalore,India,1998
    [6] Valorge C. 40 Years of Experience with SPOT In-Flight Calibration[C].Workshop on Radiometric and Geometric Calibration, Gulfport, Mississippi,USA, 2003
    [7] Gene D, Grodecki J. IKONOS Stereo Accuracy Without Ground Control[C]. ASPRS 2003 Conference,Anchorage,Alaska, USA, 2003
    [8] Zhang Li, Zhang Jixian, Chen Xiangyang, et al. Block-Adjustment with SPOT5 Imagery and Sparse GCPs Based on RFM [J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4): 302-310(张力, 张继贤, 陈向阳, 等. 基于有理多项式模型RFM的稀少控制SPOT5卫星影像区域网平差[J]. 测绘学报, 2009, 38(4): 302-310)
    [9] Grodecki J, Lutes J. IKONOS Geometric Calibrations[C]. ASPRS 2005, Baltimore, Maryland, 2005
    [10] Fraser C S,Baltsavias E,Gruen A. Processing of IKONOS Imagery for Submetre 3D Positioning and Building Extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2002, 56(3): 177-194
    [11] Baltsavias E, Zhang L,Eisenbeiss H. DSM Generation and Interior Orientation Determation of IKONOS Images Using a Testfield in Switzerland[J]. Photogrammetrie Fernerkundung Geoinformation, 2006, 60(1): 41-54
    [12] Gruen A, Kocaman S, Wolff K. Calibration and Validation of Early ALOS/PRISM Images[J]. The Journal of the Japan Society of Photogrammetry and Remote Sensing, 2007, 46(1): 24-38
    [13] Tadono T, Shimada M, Watanabe M, et al. Calibration and Validation Plan of ALOS Optical Sensors[C].Geoscience and Remote Sensing Symposium,Anchorage,AK, 2004
    [14] Wang Renxiang. Satellite Photogrammetry Princple for Three-Line-Array CCD Imagery[M]. Beijing: Surveying and Mapping Press, 2006:20-23(王任享. 三线阵CCD影像卫星摄影测量原理[M]. 北京: 测绘出版社, 2006:20-23)
    [15] Li Jing, Wang Rong, Zhu Leiming, et al. In-Flight Geometric Calibration for Mapping Satellite-1 Surveying and Mapping Camera[J]. Journal of Remote Sensing, 2012, 16(z1): 35-39(李晶, 王蓉, 朱雷鸣, 等. “天绘一号”卫星测绘相机在轨几何标定[J].遥感学报, 2012, 16(z1): 35-39)
    [16] Xu Jianyan, Hou Minghui, Yu Jin, et al. Study of CBERS CCD Camera Bias Matrix Calculation and Its Application[J]. Spacecraft Recovery & Remote Sensing, 2004(4):25-29(徐建艳, 侯明辉, 于晋,等. 利用偏移矩阵提高CBERS 图像预处理几何定位精度的方法研究[J]. 航天返回与遥感, 2004(4):25-29)
    [17] Zhu Xiaoyong, Zhang Guo, Tang Xinming, et al. Research and Application of CBRS02B Image Geometric Exterior Calibration[J]. Geography and Geo-Information Science, 2009, 25(3): 16-18(祝小勇, 张过, 唐新明, 等. 资源一号02B卫星影像几何外检校研究及应用[J]. 地理与地理信息科学, 2009, 25(3): 16-18)
    [18] Yuan Xiuxiao, Yu Junpeng. Calibration of Constant Angular Error for High Resolution Remotely Sensed Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(1): 36-41(袁修孝, 余俊鹏. 高分辨率卫星遥感影像的姿态角常差检校[J]. 测绘学报, 2008, 37(1): 36-41)
    [19] Yuan Xiuxiao, Yu Xiang. Calibration of Angular Systematic Errors for High Resolution Satellite Imagery [J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 385-392(袁修孝, 余翔. 高分辨率卫星遥感影像姿态角系统误差检校[J]. 测绘学报, 2012, 41(3): 385-392)
    [20] Lei Rong. Study on Theory and Algorithm of the In-Flight Geometric Calibration of Spaceborne Linear Array Sensor[D]. Zhengzhou: Information Engineering University, 2011(雷蓉. 星载线阵传感器在轨几何标定的理论与算法研究[D]. 郑州: 信息工程大学, 2011)
    [21] Wang Tao. Study on Theories and Methods of Linear CCD Sensor Geometric Calibration Based on Field[D]. Zhengzhou: Information Engineering University, 2012(王涛. 线阵CCD传感器实验场几何标定的理论与算法研究[D]. 郑州: 信息工程大学, 2012)
    [22] Hao Xuetao, Xu Jianyan, Wang Haiyan, et al. An Angle-based Method of On-Orbit Geometric Calibration for the Pushbroom Camera[J]. Scientia Sinica: Informationis,2011, 41(zk): 10-18 (郝雪涛, 徐建艳, 王海燕, 等. 基于角度不变的线阵推扫式CCD相机几何畸变在轨检校方法[J]. 中国科学: 信息科学, 2011, 41(增刊): 10-18)
    [23] Yang Bo, Wang Mi. On-Orbit Geometric Calibration Method of ZY-1 02C Panchromatic Camera[J]. Journal of Remote Sensing, 2013, 17(5):1 183-1 190(杨博, 王密. 资源一号02C卫星全色相机在轨几何标定方法[J]. 遥感学报, 2013, 17(5):1 183-1 190)
    [24] Wang Mi, Yang Bo, Hu Fen,et al. On-Orbit Geometric Calibration Model and Its Applications for High-Resolution Optical Satellite Imagery[J]. Remote Sensing, 2014, 6(5): 4 391-4 408
    [25] Jiang Yonghua, Zhang Guo, Tang Xinming, et al. High Accuracy Geometric Calibration of ZY-3 Three Line Image[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(4): 523-529(蒋永华, 张过, 唐新明, 等. 资源三号测绘卫星三线阵影像高精度几何检校[J]. 测绘学报, 2013, 42(4): 523-529)
    [26] Tang Xinming, Zhang Guo, Zhu Xiaoyong, et al. Triple Linear-array Imaging Geometry Model of Ziyuan-3 Surveying Satellite and Its Validation[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 191-198(唐新明, 张过, 祝小勇,等. 资源三号测绘卫星三线阵成像几何模型构建与精度初步验证[J]. 测绘学报, 2012, 41(2): 191-198)
    [27] Liu Bin.Space-ground Intergated Attitude Determination of High-resolution Satellite and Geometric Image Processing Under Jitter Conditions[D]. Wuhan: Wuhan University, 2011(刘斌.高分辨率光学卫星空地一体化定姿及姿态抖动下影像几何处理方法研究[D]. 武汉: 武汉大学, 2011)
    [28] Zhang Guo,Jiang Yonghua, Li Deren, et al. In-Orbit Geometric Calibration and Validation of ZY-3 Linear Array Sensors [J]. Photogrammetric Record, 2014, 29(145): 68-88
  • 期刊类型引用(4)

    1. 王乐洋,邹传义. PEIV模型参数估计理论及其应用研究进展. 武汉大学学报(信息科学版). 2021(09): 1273-1283+1297 . 百度学术
    2. 钟光伟,符平贵,杨钢,张俊. 融合LSC和REHSM的地壳形变分析模型. 矿山测量. 2020(05): 27-30 . 百度学术
    3. 韩杰,张松林. 附加一次和二次等式约束的Partial-EIV模型及相应算法. 测绘科学技术学报. 2019(01): 17-22+27 . 百度学术
    4. 吕志鹏,隋立芬. 基于非线性高斯-赫尔默特模型的结构总体最小二乘法. 武汉大学学报(信息科学版). 2019(12): 1808-1815 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1707
  • HTML全文浏览量:  120
  • PDF下载量:  659
  • 被引次数: 7
出版历程
  • 收稿日期:  2014-07-11
  • 发布日期:  2015-10-04

目录

    /

    返回文章
    返回