GPS高程转换的总体最小二乘拟合推估模型

王乐洋, 吴飞, 吴良才

王乐洋, 吴飞, 吴良才. GPS高程转换的总体最小二乘拟合推估模型[J]. 武汉大学学报 ( 信息科学版), 2016, 41(9): 1259-1264. DOI: 10.13203/j.whugis20140421
引用本文: 王乐洋, 吴飞, 吴良才. GPS高程转换的总体最小二乘拟合推估模型[J]. 武汉大学学报 ( 信息科学版), 2016, 41(9): 1259-1264. DOI: 10.13203/j.whugis20140421
WANG Leyang, WU Fei, WU Liangcai. Total Least Squares Fitting Estimation Model for GPS Height Transformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1259-1264. DOI: 10.13203/j.whugis20140421
Citation: WANG Leyang, WU Fei, WU Liangcai. Total Least Squares Fitting Estimation Model for GPS Height Transformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1259-1264. DOI: 10.13203/j.whugis20140421

GPS高程转换的总体最小二乘拟合推估模型

基金项目: 

国家自然科学基金 41204003

江西省教育厅科技项目 GJJ150595

江西省教育厅科技项目 KJLD12077

江西省教育厅科技项目 KJLD14049

流域生态与地理环境监测国家测绘地理信息局重点实验室项目 WE2015005

对地观测技术国家测绘地理信息局重点实验室项目 K201502

测绘地理信息公益性行业科研专项 201512026

东华理工大学博士科研启动基金 DHBK201113

江西省杰出青-人才资助计划 

国家重点研发计划 2016YFB0501405

详细信息
    作者简介:

    王乐洋, 博士, 副教授, 主要研究方向为大地测量反演及大地测量数据处理。wleyang@163.com

  • 中图分类号: P228.41

Total Least Squares Fitting Estimation Model for GPS Height Transformation

Funds: 

The National Natural Science Foundation of China 41204003

Science and Technology Project of the Education Department of Jiangxi Province GJJ150595

Science and Technology Project of the Education Department of Jiangxi Province KJLD12077

Science and Technology Project of the Education Department of Jiangxi Province KJLD14049

Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG WE2015005

Key Laboratory of Mapping from Space, NASG K201502

National Department Public Benefit Research Foundation (Surveying, Mapping and Geoinformation) 201512026

Scientific Research Foundation of ECIT DHBK201113

Support Program for Outstanding Youth Talents in Jiangxi Province 

National Key Research and Development Program 2016YFB0501405

More Information
    Author Bio:

    WANG Leyang, PhD, associate professor, specializes in geodetic inversion and geodetic data processing.wleyang@163.com

  • 摘要: 在现有的关于GPS高程转换的总体最小二乘方法研究中,通常是将高程异常转换参数的计算与待求点高程异常的计算分两步进行处理,并且只考虑由已知高程异常点的平面坐标组成的系数矩阵的误差,忽略了高程异常待求点的坐标误差。针对以上问题,本文提出了GPS高程转换的总体最小二乘拟合推估模型,将计算高程异常转换参数和待求点高程异常联合处理,且考虑到所有点的点位误差,最后采用拟合推估法进行求解。实验结果表明,本文方法能够有效地提高高程转换的精度。
    Abstract: In the current research on the total least squares method in the conversion of GPS height, the calculation of the conversion parameter and elevation abnormities of the check points are generally performed in two steps, and only consider the error in the coefficient matrix used to calculate the parameters; errors in the coordinate of the check point are ignored. In view of this gap, we put forward a total least squares fitting estimation model of GPS height transformation, that combines the calculation of fitting parameters with the calculation of elevation abnormities at inspection points, and considers the position error of all points. Collocation calculation experiemental results verify the feasibility of this method. These test results show that the method can effectively improve the accuracy of elevation conversion.
  • 尺度是空间数据的主要特性之一, 也是多尺度空间数据建模与分析中的重要内容。在地理学、地理信息科学等研究领域, 不同的认知过程, 其尺度含义不同[1-4], 如可划分为空间尺度、时间尺度和语义尺度等[4]。尺度变化可能导致空间数据的维数、几何形态、属性信息以及空间关系的变化[5-6]。多尺度数据处理与分析的一个主要内容是根据尺度变化对空间信息进行概化和综合, 通过对详细尺度的空间数据进行空间综合(选取、合并、化简)和属性综合, 达到自动或者半自动处理粗略尺度下的空间数据的目的。由尺度变化引起的拓扑关系、方向关系等空间关系的变化称为尺度依赖性建模[7], 主要应用于拓扑关系、方向关系的一致性分析[8-11]、多尺度空间数据查询[12-13]等领域。语义尺度影响下的拓扑关系多尺度计算是空间关系尺度依赖性建模问题之一[7, 14]。Tryfona等[8]、杜世宏等[7, 10]指出该问题的语义尺度主要表现为多尺度属性划分, 通过属性归纳从详细尺度向粗略尺度转换; 尺度变化后的空间对象通过区域合并进行概化综合, 此过程不改变区域对象的维数和几何形态, 空间关系由推理得到。

    目前, 拓扑关系的多尺度计算主要依赖组合推理的方法, 通过简单对象间的基本拓扑关系(简单区域间的8种基本关系, 线面间的19种关系等), 构建出推理组合表进行查表运算, 比如区域合并组合推理[8]、简单区域间的组合推理[15]等。这种方法简单直观, 易于理解, 但其不足主要表现为:①由于基于空间对象间的基本关系, 其推理结果的值域仍是基本关系; ②只能适用于简单空间对象的处理, 复杂空间对象间的推理组合不易实现; ③推理结果存在多解性。

    在拓扑关系的描述模型中, 9交模型[16-17]仍是广泛使用的一种方法, 被OpenGIS采用[18]。9交模型通过两个对象间内部(°)、边界(∂)和外部(+)的交集形成一个9交矩阵描述拓扑关系, 已被应用于描述复杂对象的拓扑关系, 如复杂区域对象间存在33种拓扑关系[19-20]。基于9交模型可以提供多种层次的空间查询, 包括谓词查询和9交矩阵查询[18, 21]。如果直接基于9交矩阵进行拓扑关系的多尺度计算, 可弥补现有方法的不足, 一方面可以不限于简单对象, 另一方面计算结果的值域可扩展为9交模型表达的所有拓扑关系。针对语义尺度影响下的拓扑关系多尺度计算, 本文提出了基于9交矩阵的计算方法, 通过定义9交关系矩阵操作算子, 直接计算出9交矩阵。

    区域对象在OpenGIS[18]和文献[19, 22]中进行了详细描述。设区域对象AR2, 满足$A = \overline {A^\circ }, \overline {A^\circ } $是包含A°的最小正则闭包; -AA的补集, 即-A= R2-A°。R2=A°∪ ∂AA+, -A=∂AA+, -(-A) = A。简单区域是一种特殊的区域对象, 同胚于一个圆盘, 具有完全连通的内部、边界和外部。

    对于R2上的两个简单区域A1A2, 如图 1所示, 将两个相离区域的并A1A2记为A1+A2, 其合并结果是一个复杂区域, 称为组合区域; 两个相邻区域(存在公共边, 拓扑关系为边相接)的并A1A2记为A1A2, 其合并结果是一个去除公共边内部的简单区域。

    图  1  区域对象定义
    Figure  1.  Definition of Region Objects

    语义尺度主要表现为多尺度属性划分[7], 比如:①概念划分, 即部分和整体的关系, 如行政区划, 村庄是县的一部分, 县是市的一部分; ②多尺度分类系统。属性是表征空间对象可被人类认知理解的概念化语义、符号或者名称。语义尺度的变化引起空间区域的多尺度划分, 表现为不同尺度下平面空间被划分成有限个区域对象的集合[7]

    定义1:语义尺度属性集S是一组属性的集合, 记为S ={ s1sm} (m>1)。语义尺度属性集S2比语义尺度属性集S1详细, 则存在映射f:S2S1, f表示部分和整体的关系或者分类关系映射。

    定义2:A是语义尺度S1下的一个区域对象, P ={ p1pn} (n>1)为一个简单区域集合, 称PA在语义尺度S2下的一个区域划分, 当且仅当下列条件满足:

    1) 语义尺度S2比语义尺度S1详细。

    2) p1pn均为简单区域。

    3) ∀ i, j = 1…nij, pipj的拓扑关系只能是边相接和相离情况之一。

    4) $A = \bigcup\nolimits_{i = 1}^n {{p_i}} $。

    5) pi属于语义尺度S2下的某一个属性。

    6) 同一属性的区域间只能是相离关系。

    以上区域划分是一个无缝划分, 不允许由粗到细的划分过程中出现空白区域。边相接关系说明相邻区域须存在公共边。区域合并是区域划分的逆过程, 即从一个详细的语义尺度S2向粗略语义尺度S1转换的过程。

    9交模型[16-17]是通过两个区域对象AB的内部(°)、边界(∂)和外部(+)的交集来描述拓扑关系。由一个3×3的0/1型9交矩阵R(A, B)表示:

    $$ \begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} {r_{11}^{AB}}&{r_{12}^{AB}}&{r_{13}^{AB}}\\ {r_{21}^{AB}}&{r_{22}^{AB}}&{r_{23}^{AB}}\\ {r_{31}^{AB}}&{r_{32}^{AB}}&{r_{33}^{AB}} \end{array}} \right] = }\\ {\left[ {\begin{array}{*{20}{c}} {{A^ \circ } \cap {B^ \circ }}&{{A^ \circ } \cap \partial B}&{{A^ \circ } \cap {B^ + }}\\ {\partial A \cap {B^ \circ }}&{\partial A \cap \partial B}&{\partial A \cap {B^ + }}\\ {{A^ + } \cap {B^ \circ }}&{{A^ + } \cap \partial B}&{{A^ + } \cap {B^ + }} \end{array}} \right]} \end{array} $$ (1)

    R(A, B)所能表达的拓扑关系总数为33种[19]。若AB均为简单区域, 仅存在8种关系:相离、相接、相交、包含、覆盖、包含于、覆盖于和相等。

    如果一个粗尺度下的区域对象B由两个相离的简单区域B1B2构成, 即B=B1+B2, 则简单区域AB的9交拓扑关系可通过AB1B2的拓扑关系分解计算得到[23]:

    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}\left( {A,B} \right) = \mathit{\boldsymbol{R}}\left( {A,{B_1} + {B_2}} \right) = }\\ {\mathit{\boldsymbol{R}}\left( {A,{B_1}} \right)\underline \vee \mathit{\boldsymbol{R}}\left( {A,{B_2}} \right) = }\\ {\left[ {\begin{array}{*{20}{c}} {r_{11}^{A{B_1}} \vee r_{11}^{A{B_2}}}&{r_{12}^{A{B_1}} \vee r_{12}^{A{B_2}}}&{r_{13}^{A{B_1}} \wedge r_{13}^{A{B_2}}}\\ {r_{21}^{A{B_1}} \vee r_{21}^{A{B_2}}}&{r_{22}^{A{B_1}} \vee r_{22}^{A{B_2}}}&{r_{23}^{A{B_1}} \wedge r_{23}^{A{B_2}}}\\ {r_{31}^{A{B_1}} \vee r_{31}^{A{B_2}}}&{r_{32}^{A{B_1}} \vee r_{32}^{A{B_2}}}&{r_{33}^{A{B_1}} \wedge r_{33}^{A{B_2}}} \end{array}} \right]} \end{array} $$ (2)

    式中, 运算符⊻称为相离区域间拓扑关系加算子。⊻满足交换律R(A, B1)⊻ R(A, B2)= R(A, B2)⊻ R(A, B1), 并且, R (B1+B2, A)=[R(A, B1+B2)]T=[R(A, B1)⊻ R(A, B2)]T, T表示矩阵转置。

    如果一个粗尺度下的区域对象B由两个边相接的简单区域B1B2构成, 记为B=B1B2, 此时利用运算符⊻不能计算出正确的拓扑关系。文献[8]通过推理组合表定性处理, 将计算结果限定在某几个关系中, 再根据实际交集情况逐一排查。如图 2所示, AB1B2的拓扑关系均为相交, 利用式(1)计算出的结果是相交, 显然与图示A包含于B不相符。利用文献[8]中的推理表, 图 2R(A, B)可以是相交、覆盖于和包含于3种取值情况之一, 这导致了推理的多解性。

    图  2  具有公共边界的区域合并与拓扑关系计算
    Figure  2.  Regions Merging with Common Boundaries and Topological Relations Computing

    由于9交矩阵以及8个基本拓扑关系是一种定性方法, 这类拓扑关系的描述模型通过0和1概化处理交集关系时, 已经丢失了大量的信息, 推理表只能给出取值的多种可能性。要消除这一多解问题, 显然需要补充信息, 弥补概化造成的信息损失。

    通过分析图 2拓扑关系计算失败的原因, 可以发现:①区域对象B1(或B2)的外部与B2(或B1)的内部相交, 通过9交矩阵R(A, B1)无法区分哪些部分是B2的内部; ②区域对象B1B2的公共边界属于B的内部, 从R(A, B1)和R(A, B2)无法获知A是否与公共边界相交。因此, 相邻区域合并后, 从9交矩阵无法有效判断出AB的外部和边界的真实交集信息。

    因此增加辅助信息, 使得拓扑关系可直接计算。当区域对象B由两个边相接的简单区域B1B2构成时, 增加辅助区域对象b1bn (n>1), 用以区分B的外部。添加规则如下:

    1) b1bn均为简单区域。

    2) 在{ b1bn, B1, B2}中, 其任意两个区域的关系只能是边相接和相离情况之一。

    3) 任意biB1或者B2存在边相接关系, 其中i=1…n

    4) B的边界是辅助区域对象边界的一部分, 即$\left( {\partial {B_{1}} \cup \partial {B_2}} \right)-\left( {\partial {B_{1}} \cap \partial {B_2}} \right) \subset \bigcup\nolimits_{i = 1}^n {\partial {b_i}} $。

    5) B1B2公共边界的两个端点位于辅助区域对象边界, 即$\partial {B_{1}} \cap \partial {B_{2}} \subset \bigcup\nolimits_{i = 1}^n {\partial {b_i}} $。

    图 3所示, 增加辅助区域对象, 图 3(b)图 3(c)为合理的添加规则; 而图 3(d)为不合理的添加规则, 因为b1b2不为边相接关系。图 4为区域合并后形成洞的情况, 洞内也需要增加辅助区域。

    图  3  添加辅助区域消除计算错误(当B1B2为边相接关系)
    Figure  3.  Extra Regions Added to Solve Ambiguities When B1 Meets B2 with Common Boundaries
    图  4  添加带洞辅助区域处理具有公共边界的B1B2区域合并
    Figure  4.  Adding Extra Regions with Holes to Merge B1 and B2 with Common Boundaries

    当添加辅助区域后, 区域对象B的内部、边界和外部将分别由式(3)至式(5)计算得到:

    $$ {B^ \circ } = \left( {B_1^ \circ \cup B_2^ \circ } \right) \cap \left( {\bigcap\nolimits_{i = 1}^n {b_i^ + } } \right) $$ (3)
    $$ \partial B = \left( {\partial {B_1} \cup \partial {B_2}} \right) \cap \left( {\bigcup\nolimits_{i = 1}^n {\partial {b_i}} } \right) $$ (4)
    $$ {B^ + } = \left( {B_1^ + \cup B_2^ + } \right) \cap \left( {\bigcup\nolimits_{i = 1}^n {b_i^ \circ } } \right) $$ (5)

    当区域对象B由两个相邻的简单区域B1B2构成时, 则简单区域AB的9交拓扑关系可通过AB1B2以及辅助区域对象b1bn (n>1)间的拓扑关系计算得到:

    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}\left( {A,B} \right) = \mathit{\boldsymbol{R}}\left( {A,{B_1} + {B_2}} \right) \wedge }\\ {\left[ { \bot \mathit{\boldsymbol{R}}\left( {A,{b_1} + {b_2} + \cdots + {b_n}} \right)} \right]} \end{array} $$ (6)

    式中, ⊥表示互换9交矩阵的第1列和第3列; ∧表示矩阵对应元素进行逻辑与运算。

    证明:设Ma={A°, ∂A, A+}, ∀aMa, 可得:

    $$ \begin{array}{l} a \cap {B^ \circ } = a \cap \left( {\left( {B_1^ \circ \cup B_2^ \circ } \right) \cap \left( {\bigcap\nolimits_{i = 1}^n {b_i^ + } } \right)} \right) = \\ \left[ {\left( {a \cap B_1^ \circ } \right) \cup \left( {a \cap B_2^ \circ } \right)} \right] \cap \left[ {a \cap \left( {\bigcap\nolimits_{i = 1}^n {b_i^ + } } \right)} \right]\\ \;\;\;\;\;\;\;\;\;\; \to \left( {r_{i1}^{A{B_1}} \vee r_{i1}^{A{B_2}}} \right) \wedge \left( {\mathop \wedge \limits_{i = 1}^n r_{i3}^{A{b_i}}} \right) \end{array} $$
    $$ \begin{array}{l} a \cap \partial B = a \cap \left( {\left( {\partial {B_1} \cup \partial {B_2}} \right) \cap \left( {\bigcup\nolimits_{i = 1}^n {\partial {b_i}} } \right)} \right) = \\ \left[ {\left( {a \cap \partial {B_1}} \right) \cup \left( {a \cap \partial {B_2}} \right)} \right] \cap \left[ {a \cap \left( {\bigcup\nolimits_{i = 1}^n {\partial {b_i}} } \right)} \right]\\ \;\;\;\;\;\;\;\;\;\; \to \left( {r_{i2}^{A{B_1}} \vee r_{i2}^{A{B_2}}} \right) \wedge \left( {\mathop \vee \limits_{i = 1}^n r_{i2}^{A{b_i}}} \right) \end{array} $$
    $$ \begin{array}{l} a \cap {B^ + } = a \cap \left( {\left( {B_1^ + \cap B_2^ + } \right) \cap \left( {\bigcup\nolimits_{i = 1}^n {b_i^ \circ } } \right)} \right) = \\ \left[ {\left( {a \cap B_1^ + } \right) \cap \left( {a \cap B_2^ + } \right)} \right] \cap \left[ {a \cap \left( {\bigcup\nolimits_{i = 1}^n {b_i^ \circ } } \right)} \right]\\ \;\;\;\;\;\;\;\;\;\; \to \left( {r_{i3}^{A{B_1}} \vee r_{i3}^{A{B_2}}} \right) \wedge \left( {\mathop \vee \limits_{i = 1}^n r_{i1}^{A{b_i}}} \right) \end{array} $$

    式中, $\mathop \wedge \limits_{i = 1}^n $表示n-1个逻辑与运算; $\mathop \vee \limits_{i = 1}^n $表示n-1个逻辑或运算。由于AB1B2以及辅助区域对象b1bn (n>1)均为简单区域, AB1B2间的计算可以记为R(A, B1+ B2), 而A与辅助区域对象b1bn的计算可以记为R(A, b1 + b2 +…+ bn)。R(A, b1 + … + bn)的第1列与第3列调换, 即得R(A, B)= R(A, B1+ B2) ∧ [⊥R(A, b1 + b2 +…+ bn)]。

    图 5所示的气象信息系统空气污染条件中, 图 5(a)为华北4省市(北京市、天津市、河北省和山西省)气象信息系统某一时段的空气污染状况。其中一项查询服务为查询行政区域组合与污染条件分布区的拓扑关系。气象信息系统中, 最详细的尺度为县区级行政区(见图 5(b)), 系统只存储县区级区域和空气污染分布区域间的拓扑关系。县区级行政区采用简单区域对象进行表达, 省、市或者特定地区的区域对象由县区级行政区合并而成, 系统内仅存储了其对县区级行政区域的构成关系。由于存在相邻区域合并情况, 故在整个地图(华北4省市)外部增加了两个附加的县区级区域, 如图 6所示。

    图  5  华北4省气象信息系统空气污染条件(2016年10月5日6时)
    Figure  5.  Meteorological Conditions of Air Pollution in Four Provinces of North China (At 6:00 on October 5, 2016)
    图  6  河北省区域构成与附加区域
    Figure  6.  Administrative Regions of Hebei Province and the Added Extra Regions

    A为某一时段某一等级空气污染条件分布区域(简单区域), 多个县区级行政区域合并与A之间的拓扑关系计算步骤为:

    1) 获取查询区域内所有县级区域对象的集合MB={B1Bm} (m>1)。

    2) 将MB中的区域对象根据相邻和相离关系拆分成多个相离部分Ci, 即MB= ∪Ci。其中, Ci满足:Ci中任意区域对象与非Ci中其他区域对象是相离关系, 且Ci中任意区域对象必与Ci中另一区域对象是相接关系, 否则Ci中只有一个区域对象。

    3) 对任意Ci, 存在与Ci中的对象为相接关系但不属于Ci的区域对象, 构成辅助区域对象集合Mb={b1bn} (n>1)。

    4) 针对任意Ci, 按式(6)计算ACi的拓扑关系。

    5) 按式(2)计算AB的拓扑关系。

    查询实例:计算2016年10月5日6时河北省与五级空气污染分布区的拓扑关系。步骤如下:

    1) 记简单区域A为五级空气污染分布区。

    2) 记区域B为河北省区域, 其由兴隆县等172个县级区域构成, 即:

    MB={B1B172}={兴隆县…宽城}

    图 6(a)可知, 河北由两个相离部分构成, 划分为两个区域, 即区域1(C1)和区域2(C2)。

    3) C1由169个县级区域构成, 即C1={B1B169}={兴隆县…}。记Mb= {b1b32, b33}={延庆…附加区域1, 附加区域2}, 按式(6)计算AC1的拓扑关系为:

    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}\left( {A,{C_1}} \right) = \mathit{\boldsymbol{R}}\left( {A,{B_1} + \cdots + {B_{169}}} \right) \wedge }\\ {\left[ { \bot \mathit{\boldsymbol{R}}\left( {A,{b_1} + \cdots + {b_{33}}} \right)} \right] = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ 1&0&0\\ 1&1&1 \end{array}} \right]} \end{array} $$

    4) C2由3个县级区域构成, 即C2={B1, B2, B3}={三河, 大厂, 香河}。记Mb={b1b6}={通州, 顺义, 平谷, 武清, 蓟县, 宝坻}, 计算AC2的拓扑关系为:

    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}\left( {A,{C_2}} \right) = \mathit{\boldsymbol{R}}\left( {A,{B_1} + {B_2} + {B_3}} \right) \wedge }\\ {\left[ { \bot \mathit{\boldsymbol{R}}\left( {A,{b_1} + \cdots + {b_6}} \right)} \right] = \left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&0&1\\ 1&1&1 \end{array}} \right]} \end{array} $$

    5) 按式(2)计算AB的拓扑关系为:

    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}\left( {A,B} \right) = \mathit{\boldsymbol{R}}\left( {A,{C_1} + {C_2}} \right) = }\\ {\mathit{\boldsymbol{R}}\left( {A,{C_1}} \right)\underline \vee \mathit{\boldsymbol{R}}\left( {A,{C_2}} \right) = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ 1&0&0\\ 1&1&1 \end{array}} \right]} \end{array} $$

    通过计算可得9交矩阵R(A, B)的拓扑语义为“包含于”。

    空间数据间的拓扑关系往往随着尺度的变化而变化, 快速有效地计算拓扑关系有助于多尺度空间数据查询以及拓扑一致性分析。针对区域合并导致的拓扑关系变化与多尺度计算, 区别于目前组合推理的方法[8-10], 本文提出了直接基于9交矩阵的拓扑关系多尺度计算方法, 并进行了应用分析。不同语义尺度下的复杂区域由有限个简单区域合并而成, 包括相离区域合并和相邻区域合并, 通过定义两个9交矩阵操作算子, 可利用详细语义尺度下的拓扑关系计算出粗略语义尺度下的拓扑关系。该方法的特点为:计算结果值域为复杂区域间所有可能的拓扑关系, 可以适用于不同层次的查询分析; 主要针对数据变化不大的情况, 通过增加辅助信息消除了相邻区域合并引起的拓扑关系计算多解性; 目前只考虑了多个相离或相邻的简单区域合并情况。

    由于布尔型9交矩阵对真实拓扑关系进行了简化, 需进一步研究采取增加信息的办法, 扩展本方法适用于尺度变化引起的拓扑关系计算问题, 并结合栅格领域、方向关系消除计算歧义性; 同时后续研究还可考虑将该方法扩展到带洞区域或者其他类型的空间对象(比如点、线)的多尺度分析中等。

  • 图  1   测边网点的空间分布

    Figure  1.   Spatial Distribution of Trilateration Net's Point

    表  1   各点坐标、高程异常/m

    Table  1   Coordinates and Height Anomaly of Points/m

    点号 X Y ξ
    A 100 100 -
    B 120 120 -
    1 120 140 -87.8
    3 160 120 149.8
    4 170 200 -187.5
    5 150 190 -225
    7 130 220 -524.1
    10 110 180 -336.3
    11 170 160 35.3
    12 200 170 144
    2 140 160 -102.4
    6 190 140 220.9
    8 180 100 294
    9 200 220 -151
    下载: 导出CSV

    表  2   各点平差坐标、加入误差的高程异常/m

    Table  2   Adjusted Coordinates and Add the Abnormal Height of Error/m

    点号 X Y ξ
    A 100 100 -
    B 120 120 -
    1 119.997 9 140.000 6 -87.798 0
    3 159.989 1 120.001 7 149.795 9
    4 170.011 9 199.980 9 -187.495 4
    5 150.013 1 189.987 9 -224.997 6
    7 130.016 7 219.995 4 -524.100 7
    10 110.008 0 180.000 5 -336.299 9
    11 170.006 2 159.987 1 35.300 2
    12 200.013 5 169.973 9 144.003 0
    2 140.003 4 159.996 6 -102.396 2
    6 190.003 3 139.983 0 220.899 8
    8 179.962 3 100.003 3 293.999 2
    9 200.005 6 219.983 8 -151.001 1
    下载: 导出CSV

    表  3   各方案所用方法列表

    Table  3   List of Methods Used in Different Schemes

    方案 方法
    方案1 本文提出方法
    方案2 最小二乘法
    方案3 总体最小二乘法
    方案4 加权总体最小二乘法[8]
    方案5 加权总体最小二乘法[4]
    下载: 导出CSV

    表  4   检验点转换的结果及与真值的残差范数/m

    Table  4   Checkpoint's Result of the Transformation and Norm of Residual Between the Estimated Value and True Value/m

    方案 点号
    2 6 8 9 ‖Δ
    真值 -102.4 220.9 294 -151 -
    方案1 -102.394 2 220.901 8 293.896 6 -151.149 4 0.181 7
    方案2 -102.413 5 220.914 5 293.929 7 -151.186 5 0.200 3
    方案3 -102.413 5 220.914 5 293.929 7 -151.186 5 0.200 3
    方案4 -102.405 1 220.893 1 293.900 7 -151.154 6 0.183 9
    方案5 -102.413 5 220.914 5 293.929 7 -151.186 5 0.199 3
    下载: 导出CSV
  • [1] 徐绍铨, 张华海, 杨志强, 等.GPS测量原理及应用[M].武汉:武汉大学出版社, 2008

    Xu Shaoquan, Zhang Huahai, Yang Zhiqiang, et al. GPS Measurement Principle and Application[M]. Wuhan: Wuhan University Press, 2008

    [2] 王乐洋, 许才军.总体最小二乘研究进展[J].武汉大学学报·信息科学版, 2013, 38(7): 850-856 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201307022.htm

    Wang Leyang, Xu Caijun. Progress in Total Least Square[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 850-856 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201307022.htm

    [3] 丁海勇, 孙景领.GPS高程转换的总体最小二乘方法研究[J].大地测量与地球动力学, 2013, 33(3):52-55 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303011.htm

    Ding Haiyong, Sun Jingling. Research on Total Least-Squares Methods for Transformation of GPS Elevation[J]. Journal of Geodesy and Geodynamics, 2013, 33(3): 52-55 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303011.htm

    [4] 赵辉, 张书毕, 张秋昭.基于加权总体最小二乘法的GPS高程拟合[J].大地测量与地球动力学, 2011, 31(5): 88-90 http://www.cnki.com.cn/article/cjfdtotal-dkxb201105018.htm

    Zhao Hui, Zhang Shubi, Zhang Qiuzhao. GPS Height Fitting of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy and Geodynamics, 2011, 31(5):88-90 http://www.cnki.com.cn/article/cjfdtotal-dkxb201105018.htm

    [5] 龚循强, 陈磬, 周秀芳.总体最小二乘平差方法在GPS高程拟合中的应用研究[J].测绘通报, 2014(3): 6-8 http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201403002.htm

    Gong Xunqiang, Chen Qing, Zhou Xiufang. The Application Research of GPS Height Fitting Based on TLS Adjustment Method[J]. Bulletin of Surveying and Mapping, 2014(3): 6-8 http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201403002.htm

    [6]

    Tao Y Q, Gao J X, Yao Y F. TLS Algorithm for GPS Height Fitting Based on Robust Estimation[J]. Survey Review, 2014, 46(336):184-188 doi: 10.1179/1752270613Y.0000000083

    [7] 李博峰, 沈云中, 李薇晓.无缝三维基准转换模型[J].中国科学(地球科学), 2012, 42(7): 1 047-1 054 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207012.htm

    Li Bofeng, Shen Yunzhong, Li Weixiao. The Seamless Model for Three-Dimensional Datum Transformation[J]. Sci China Earth Sci, 2012, 42(7): 1 047-1 054 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207012.htm

    [8]

    Mahboub V. On Weighted Total Least-Squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86(5): 359-367 doi: 10.1007/s00190-011-0524-5

    [9] 鲁铁定, 宁津生.总体最小二乘平差理论及其应用[M].北京:中国科学技术出版社, 2011

    Lu Tieding, Ning Jinsheng. Total Least Squares Adjustment Theory and Its Applications[M]. Beijing: China Science and Technology Press, 2011

    [10] 王乐洋.测边网坐标的总体最小二乘平差方法[J].大地测量与地球动力学, 2012, 32(6): 81-85 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201206018.htm

    Wang Leyang. Trilateration Net's Coordinate Adjustment Based on Total Least Squares[J]. Journal of Geodesy and Geodynamics, 2012, 32(6): 81-85 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201206018.htm

    [11] 孔建, 姚宜斌, 吴寒.整体最小二乘的迭代解法[J].武汉大学学报·信息科学版, 2010, 35(6): 711-714 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006024.htm

    Kong Jian, Yao Yibin, Wu Han. Iterative Method for Total Least-Squares[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 711-714 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006024.htm

    [12] 陶本藻, 邱卫宁, 姚宜斌.误差理论与测量平差基础[M].武汉:武汉大学出版社, 2009

    Tao Benzao, Qiu Weining, Yao Yibin. Error Theory and Fundation of Surveying Adjustment[M].Wuhan: Wuhan University Press, 2009

    [13] 李丽华, 高井祥, 刘晋斌.协方差函数拟合高程异常方法探析[J].测绘工程, 2005, 14(4):33-35 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC200504009.htm

    Li Lihua, Gao Jingxiang, Liu Jinbin. Discussion of the Methods of the Covariance Function Prediction for the Fitting of Abnormal Height[J]. Engineering of Surveying and Mapping, 2005, 14(4):33-35 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC200504009.htm

    [14] 王增利, 黄腾, 邓标.基于二次曲面的拟合推估法在GPS高程测量中的应用[J].测绘工程, 2009, 18(1):50-52 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC200901016.htm

    Wang Zengli, Huang Teng, Deng Biao. Application of Collocation Model Based on Quadric Surface in GPS Leveling Surveying[J]. Engineering of Surveying and Mapping, 2009, 18(1):50-52 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC200901016.htm

    [15]

    Teunissen P J G, Simons D, Tiberius C. Probability and Observation Theory[M]. The Netherlands: Delft University of Technology, 2008

  • 期刊类型引用(2)

    1. 卢万杰,刘伟,牛朝阳,谢丽敏,吕亮. 服务于空天协同对地观测的语义信息模型构建. 地球信息科学学报. 2022(08): 1421-1431 . 百度学术
    2. 李雯静,张馨心,焦宇豪. 基于精细拓扑的矿井排水系统多尺度建模. 金属矿山. 2022(11): 216-221 . 百度学术

    其他类型引用(1)

图(1)  /  表(4)
计量
  • 文章访问数:  1644
  • HTML全文浏览量:  72
  • PDF下载量:  431
  • 被引次数: 3
出版历程
  • 收稿日期:  2014-09-08
  • 发布日期:  2016-09-04

目录

/

返回文章
返回