代数重构算法在GNSS水汽层析解算中的应用

于胜杰, 万蓉, 付志康

于胜杰, 万蓉, 付志康. 代数重构算法在GNSS水汽层析解算中的应用[J]. 武汉大学学报 ( 信息科学版), 2016, 41(8): 1113-1117, 1124. DOI: 10.13203/j.whugis20140316
引用本文: 于胜杰, 万蓉, 付志康. 代数重构算法在GNSS水汽层析解算中的应用[J]. 武汉大学学报 ( 信息科学版), 2016, 41(8): 1113-1117, 1124. DOI: 10.13203/j.whugis20140316
YU Shengjie, WAN Rong, FU Zhikang. Application of Algebraic Reconstruction Technique on the GNSS Water Vapor Tomography[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1113-1117, 1124. DOI: 10.13203/j.whugis20140316
Citation: YU Shengjie, WAN Rong, FU Zhikang. Application of Algebraic Reconstruction Technique on the GNSS Water Vapor Tomography[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1113-1117, 1124. DOI: 10.13203/j.whugis20140316

代数重构算法在GNSS水汽层析解算中的应用

基金项目: 

国家自然科学基金 41375041

大地测量与地球动力学国家重点实验室开放基金 SKLGED2013-4-3-E

暴雨监测预警湖北省重点实验室暴雨研究开放基金 IHR201302

详细信息
    作者简介:

    于胜杰, 博士, 主要从事GPS数据处理及地基GPS气象学研究。yusj_whihr@163.com

  • 中图分类号: P412.2;P228.42

Application of Algebraic Reconstruction Technique on the GNSS Water Vapor Tomography

Funds: 

The National Natural Science Foundation of China 41375041

the Open Research Fund Program of State Key Laboratory of Geodesy and Earth's Dynamics SKLGED2013-4-3-E

the Open Research Fund Program of Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research IHR201302

  • 摘要: 全球导航卫星系统(GNSS)水汽层析反演技术是目前获取对流层水汽三维分布的重要方法。考虑到代数重构算法在迭代反演中具有节省计算机内存且计算稳定度高的优点,对代数重构算法在GNSS水汽层析中的应用进行了研究。研究结果表明,受水汽在对流层中的分布情况的影响,传统的加法代数重构算法在实际的层析解算中,会出现较大的重构误差,而乘法代数重构算法和调整了松弛参数向量的加法代数重构算法则大大提高了层析解算的精度;代数重构算法较附加约束条件的层析解算方法更易受到观测值误差的影响,但采用乘法代数重构算法可以获得优于加法代数重构算法的结果。
    Abstract: The GNSS water vapor tomography technique can be used to obtain spatially resolved humidity information about the troposphere. The application of this method in GNSS water vapor tomography is discussed in detail considering the need to save computer memory and in light of the high stability when calculating inversion with the algebraic reconstruction technique, The Algebraic Reconstruction Technique is used to construct the distribution of water vapor; experimental results indicate that the solution of the traditional ART shows large reconstruction error due to the distribution property of the water vapor in the troposphere, while the IART method which adapts a relaxation parameter vector gets a favorable solution. The MART method also shows the similar results. Compared inversion with constraints, the algebraic reconstruction technique method is more susceptible to the observation error. The solution generated by the MART method is better than that of the IART method.
  • 图  1   层析区域站点分布及水平网格划分

    Figure  1.   Distribution of GNSS Sites and Horizontal Grids Defined in Tomography Region

    图  2   利用几种代数重构算法重构的大气湿折射率Nw的误差

    Figure  2.   Reconstruction Error of the Wet Refractivity Based on ART, IART and MART

    图  3   重构的大气湿折射率与网格真值的比较

    Figure  3.   Comparison Between the Reconstructed Field of Wet Refractivity and the Truth Value

    图  4   不同观测值误差下重构的大气湿折射率误差的均方根值

    Figure  4.   RMS of the Reconstructed Wet Refractivity Field at Different Observation Error Levels

    表  1   不同解算方法重构误差的均值、均方根值

    Table  1   Mean and RMS Value of the Reconstructed Error Based on Different Reconstruction Technique

    方法 松弛因子 均值/(mm\5km-1) 均方根值/(mm\5km-1)
    所有网格 有射线穿过的网格 所有网格 有射线穿过的网格
    ART 约0.2 -0.50 0.39 8.40 7.47
    IART 约0.1 -1.16 -0.26 5.64 4.16
    MART 约0.15 -1.28 -0.32 5.78 4.24
    附加约束条件的层析解算方法 / -0.99 -0.25 4.74 3.18
    下载: 导出CSV
  • [1]

    Bevis M, Businger S, Herring T A, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research, 1992, 97(D14): 15 787-15 801 doi: 10.1029/92JD01517

    [2]

    Baltink H K, Van der Marel H, Van der Hoeven A G A. Integrated Atmospheric Water Vapor Estimates from a Regional GPS Network[J]. Journal of Geophysical Research, 2002, 107(D3), doi: 10.1029/2000JD000094

    [3]

    Bokoye A I, Royer A, O'Neill N T, et al. Multisensor Analysis of Integrated Atmospheric Water Vapor over Canada and Alaska[J]. Journal of Geophysical Research, 2003, 108(D15), doi: 10.1029/2002JD002721

    [4]

    Flores A, Ruffini G, Rius A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18(2): 223-234 doi: 10.1007/s00585-000-0223-7

    [5]

    Skone S, Hoyle V. Troposphere Modeling in a Regional GPS Network[J]. Journal of Global Positioning System, 2005, 4(1-2): 230-239 http://cn.bing.com/academic/profile?id=2036360138&encoded=0&v=paper_preview&mkt=zh-cn

    [6] 宋淑丽, 朱文耀, 丁金才, 等.上海GPS网层析水汽三维分布改善数值预报湿度场[J].科学通报, 2005, 50(20): 2 271-2 277 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520015.htm

    Song Shuli, Zhu Wenyao, Ding Jincai, et al. 3D Water-vapor Tomography with Shanghai GPS Network to Improve Forecasted Moisture Field[J]. Chinese Science Bulletin, 2006, 50(20): 2 271-2 277 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520015.htm

    [7] 夏朋飞, 蔡昌盛, 戴吾蛟, 等.地基GPS联合COSMIC掩星数据的水汽三维层析研究[J].武汉大学学报\5信息科学版, 2013, 38(8): 892-896 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201308004.htm

    Xia Pengfei, Cai Changsheng, Dai Wujiao, et al. Three-dimensional Water Vapor Tomography Using Ground-based GPS and COSMIC Occultation Observation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 892-896 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201308004.htm

    [8]

    Rohm W, Bosy J. The Verification of GNSS Troposphic Tomography Model in a Mountainous Area[J]. Advances in Space Research, 2011, 47(10): 1 721-1 730 doi: 10.1016/j.asr.2010.04.017

    [9]

    Chen B, Liu Z. Voxel-optimized Regional Water Vapor Tomography and Comparison with Radiosonde and Numerical Weather Model[J]. Journal of Geodesy, 2014, 88(7): 691-703 doi: 10.1007/s00190-014-0715-y

    [10]

    Stolle C, Schlüter S, Heise M, et al. A GPS Based Three-dimensional Ionospheric Imaging Tool: Process and Assessment[J]. Advances in Space Research, 2006, 38(11): 2 313-2 317 doi: 10.1016/j.asr.2006.05.016

    [11]

    Wen D B, Yuan Y B, Ou J K, et al. Three-dimensional Ionospheric Tomography by an Improved Algebraic Reconstruction Technique[J]. GPS Solutions, 2007, 11(4): 251-258 doi: 10.1007/s10291-007-0055-y

    [12]

    Bender M, Dick G, Ge M, et al.Development of a GNSS Water Vapour Tomography System Using Algebraic Reconstruction Techniques[J]. Advances in Space Research, 2011, 47(10): 1 704-1 720 doi: 10.1016/j.asr.2010.05.034

    [13] 王维, 王解先.联合迭代重构算法在对流层水汽三维重构中的应用研究[J].大地测量与地球动力学, 2011, 31(6):100-103 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201106022.htm

    Wang Wei, Wang Jiexian. Application of Simultaneous Iterations Reconstruction Technique for 3D Water Vapor Tomography System[J]. Journal of Geodesy and Geodynamics, 2011, 31(6): 100-103 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201106022.htm

    [14] 于胜杰, 柳林涛, 梁星辉.约束条件对GPS水汽层析解算的影响分析[J].测绘学报, 2010, 39(5): 491-496 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201005011.htm

    Yu Shengjie, Liu Lintao, Liang Xinghui. Influence Analysis of Constraint Condition on GPS Water Vapor Tomography[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 491-496 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201005011.htm

图(4)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-29
  • 发布日期:  2016-08-04

目录

    /

    返回文章
    返回