基于Fréchet距离的光谱曲线匹配应用分析

高孝杰, 简季, 戴晓爱, 陈婉佳

高孝杰, 简季, 戴晓爱, 陈婉佳. 基于Fréchet距离的光谱曲线匹配应用分析[J]. 武汉大学学报 ( 信息科学版), 2016, 41(3): 408-414. DOI: 10.13203/j.whugis20140147
引用本文: 高孝杰, 简季, 戴晓爱, 陈婉佳. 基于Fréchet距离的光谱曲线匹配应用分析[J]. 武汉大学学报 ( 信息科学版), 2016, 41(3): 408-414. DOI: 10.13203/j.whugis20140147
GAO Xiaojie, JIAN Ji, DAI Xiaoai, CHEN Wanjia. Spectral Curve Matching Application Analysis Based on Fréchet Distance[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 408-414. DOI: 10.13203/j.whugis20140147
Citation: GAO Xiaojie, JIAN Ji, DAI Xiaoai, CHEN Wanjia. Spectral Curve Matching Application Analysis Based on Fréchet Distance[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 408-414. DOI: 10.13203/j.whugis20140147

基于Fréchet距离的光谱曲线匹配应用分析

基金项目: 国家自然科学基金(41071265, 41201440);国家教育部博士点基金(20105122110006, 20135122120009);重庆市国土资源和房屋管理局科技计划(cIGMRll03);成都理工大学研究基金(2012YG02);四川省教育厅自然科学青-基金(07zBl21)。
详细信息
    作者简介:

    高孝杰,硕士,研究方向为高光谱遥感目标探测、识别与分类。jacorygao@outlook.com

    通讯作者:

    简季,博士,教授。jianji@cdut.edu.cn

  • 中图分类号: P237;TP751

Spectral Curve Matching Application Analysis Based on Fréchet Distance

Funds: The National Natural Science Foundation of China, Nos. 41071265, 41201440; the PhD Programs Foundation of Ministry of Education of China, Nos. 20105122110006, 20135122120009; the Land Resources and Housing Management Bureau of Science and Technology Plan Project of Chongqing, No. cIGMRll03;the Research Fundation of Chengdu University of Technology, No. 2012YG02; the Education Department of Natural Science Youth Project of Sichuan Province, No.07zBl21.
  • 摘要: 提出了一种基于Fréchet距离的度量光谱曲线相似度的新方法,并将该方法应用于对不同植物种类的识别,对5种不同植物实测光谱曲线进行测试,并对测试结果进行了详细的分析和探讨,同时也分析了该方法在利用光谱曲线进行物种识别和匹配方面的适用性和局限性。结果表明,基于Fréchet距离的光谱曲线相似性度量精度较高。
    Abstract: The spectral curves of ground objects are used for the research of quantitative remote sensing and image classification, so it is meaningful to analyze the similarities and differences of spectral curves for each species of plant. This article puts forth a new method based on Fréchet distance to measure similarity of spectral curves used for recognition of different plant types. We tested spectral curve measured from five kinds of different plants, and present a detailed analysis and discussion of the results. We also analyzed the applicability and limitations of this method in spectral curve recognition and matching application. Results showthat the precision of spectral curve similarity measurement based on Fréchet distance is much higher than other methods.
  • [1] Tong Qingxi, Zhang Bing, Zheng Lanfen. Hyperspectral Remote Sensing[M]. Beijing:Higher Education Press,2006(童庆禧, 张兵, 郑兰芬. 高光谱遥感:原理、技术与应用[M]. 北京: 高等教育出版社, 2006)
    [2] Chang Ruichun. Application of Altered Mineral Information and Structure to Hyperspectral Remote Sensing Prospecting[J]. Scientific and Technological Management of Land and Resources, 2012(6):84-87(常睿春. 虫变矿物信息与构造在高光谱遥感找矿中的应用初探[J]. 国土资源科技管理, 2012 (6):84-87)
    [3] Yan Shouxun, Zhang Bing, Zhao Yongchao, et al. Summarizing the Technical Flow and Main Approaches for Discrimination and Mapping of Rocks and Minerals Using Hyperspectral Remote Sensing[J]. Remote Sensing Technology and Application,2004, 19(1):52-63(燕守勋, 张兵, 赵永超, 等. 高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J]. 遥感技术与应用, 2004, 19(1):52-63)
    [4] Xu Yuanjin, Hu Guangdao, Zhang Xian. Object Indentification for Hyperspectral Image Based on Exhaustive Method[J]. Geomatics and Information Science of Wuhan University, 2008,33(2):124-127(徐元进, 胡光道, 张献. 基于穷举法的高光谱遥感图像地物识别研究[J]. 武汉大学学报·信息科学版, 2008, 33(2):124-127)
    [5] Bao Gang. Hyperspectral Remote Sensing Estimation for the Vegetation Cover[J]. Journal of Nature Resources, 2013, 28(7):1 243-1 254 (包刚. 高光谱植被覆盖度遥感估算研究[J]. 自然资源学报,2013, 28(7):1 243-1 254)
    [6] Li Mingze, Zhao Xiaohong, Liu Yue, et al. Inversion of Vegetation Canopy's Chlorophyll Content Based on Airborne Hyperspectral Image[J]. Chinese Journal of Applied Ecology,2013, 24(1):177-182(李明泽, 赵小红, 刘钺, 等. 基于机载高光谱影像的植被冠层叶绿素反演[J]. 应用生态学报, 2013, 24(1):177-182)
    [7] Xin Liwei, Li Xiaojuan, Li Angsheng, et al. A Comparative Study on Estimation Model for Leaf Area Index of Vegetation in Marshes in Honghe National Nature Reserve Based on Hyperspectral and Multispectral Vegetation Indices[J]. Wetland Science,2013, 11(3):313-319(邢丽玮, 李小娟, 李昂晟, 等. 基于高光谱与多光谱植被指数的洪河沼泽植被叶面积指数估算模型对比研究[J]. 湿地科学,2013, 11(3):313-319)
    [8] Song S, Gong W, Zhu B,et al. Wavelength Selection and Spectral Discrimination for Paddy Rice, With Laboratory Measurements of Hyperspectral Leaf Reflectance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(5):672-682
    [9] Zhang L, Huang X. Object-oriented Subspace Analysisfor Airborne Hyperspectral Remote Sensing Imagery[J]. Neurocomputing, 2010, 73(4/6):927-936
    [10] Du Peijun, Tang Hong, Fang Tao. Algorithms for Spectral Similarity Measures in Hyperspectral RS[J]. Geomatics and Information Science of Wuhan University, 2006,31(2):112-115(杜培军, 唐宏, 方涛. 高光谱遥感光谱相似性度量算法与若干新方法研究[J]. 武汉大学学报·信息科学版, 2006, 31(2):112-115)
    [11] Fu X, Kim MS, Chao K, et al. Detection of Melaminein Milk Powders Based on NIR Hyperspectral Imaging and Spectral Similarity Analyses[J]. Journal of Food Engineering, 2014, 124:97-104
    [12] Stein S, Scott D. Optimization and Testingof Mass Spectral Library Search Algorithms for Compound Identification[J]. J Am Soc Spectrom,1994, 5(9):859-866
    [13] van der Meer F. The Effectivenessof Spectral Similarity Measures for The Analysis of Hyperspectral Imagery[J]. International Journal of Applied Earth Observation and Geoinformation,2006, 8(1):3-17
    [14] Zhang J, Koo I, Wang B,et al. A Large Scale Test Dataset to Determine Optimal Retention Index Threshold Based on Three Mass Spectral Similarity Measures[J]. Journal of Chromatography A, 2012, 1 251:188-193
    [15] Shi Beiqi, Liu Chun, Chen Neng, et al. Spectral Similarity Measure and Experimental Analyses for Field Spectroscopy[J]. Journal of Tongji University(Natural Science), 2011, 39(2):292-298(施蓓琦, 刘春, 陈能, 等. 典型地物实测光谱的相似性测度与实验分析[J]. 同济大学学报(自然科学版),2011, 39(2):292-298)
    [16] Mémoli F. Some Properties of Gromov-Hausdorff Distances[J]. Discrete & Computational Geometry, 2012, 48(2):416-440
    [17] Helmut A, Michel G. Computing the Fréchet Distance Between Two Polygonal Curves[J].International Journal of Computational Geometry & Applications,1993, 5(1/2):75-91
    [18] Buchin K, Buchin M, Wenk C. Computing the Fréchet Distance Between Simple Polygons[J].Computational Geometry,2008, 41(1/2):2-20
    [19] Pelletier S. Computing the Fréchet Distance Between Two Polygonal Curves: Computational Geometry[OL]. http://www.cim.mcgill.ca/~stephane/cs507/Project.html,2014
  • 期刊类型引用(16)

    1. 李学灿,李震,孙一平,王紫鑫,古振宇. 签名笔压特征的计算机辅助性量化分析研究. 中国司法鉴定. 2024(03): 60-69 . 百度学术
    2. 姚昱彤,王菲,朱如玉,江晶垚,程璐. 基于光谱反射率的色纺纱颜色评价研究进展. 毛纺科技. 2024(11): 125-132 . 百度学术
    3. 胡家文,刘忠乐,文无敌,张志强. 一种基于DTW算法的磁场相似性度量方法. 水下无人系统学报. 2023(03): 430-435 . 百度学术
    4. 崔翔宇,程璐,杨月茹,吴艳丰,夏鑫,李永贵. 基于光谱特征的粘胶纤维混色纺纱过程呈色机理分析. 光谱学与光谱分析. 2023(12): 3916-3923 . 百度学术
    5. 刘一飞,张宁,赵鹤达,徐磊,林朋飞. 基于相似性度量的磁异信号匹配检测算法. 电子测量与仪器学报. 2022(09): 103-110 . 百度学术
    6. 杨豪,卢兴来,胡利军,楼成武,项馨仪. 利用Fréchet距离算法分析天气雷达关键波形. 气象水文海洋仪器. 2021(02): 5-8 . 百度学术
    7. 李玉,宫学亮,赵泉华. 基于张量径向基核函数支持向量机的高光谱影像分类. 仪器仪表学报. 2020(12): 253-262 . 百度学术
    8. 袁理,王丹书,谷迁,屠劭杰,熊莹,袁浩然,刘军平,鄢煜尘. 基于光谱泛相似测度的色纺纱线与织物间呈色规律. 纺织学报. 2019(02): 30-37 . 百度学术
    9. 张飞,游剑,王蒙蒙,晋刚,陈俊. 基于过程检测的塑料加工特性数据库系统. 塑料工业. 2019(09): 98-101+146 . 百度学术
    10. 高力,金飞,江振治,王番,芮杰. 顾及形变的影像边缘ICP匹配技术. 测绘通报. 2019(12): 40-44 . 百度学术
    11. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 . 百度学术
    12. 石剑,刘忠乐,周敏佳,文无敌. 一种基于离散Fréchet距离的磁场相似性度量方法. 电子学报. 2018(04): 856-861 . 百度学术
    13. 刘晓双,龚直文,吴见. 基于多特征的高光谱遥感土地利用信息提取. 南京林业大学学报(自然科学版). 2018(04): 141-147 . 百度学术
    14. 袁理,代乔民,付顺林,郑力文,鄢煜尘. 基于原色纤维混配色织物的呈色特性与影响因素分析. 纺织学报. 2018(10): 38-43 . 百度学术
    15. 赵文文,胡志华,魏晨. 基于AIS的船舶航行周期识别. 计算机应用与软件. 2018(10): 111-116 . 百度学术
    16. 党广兴,吴财芳,王博. 煤样吸附/解吸滞后效应定量分析. 煤炭科学技术. 2017(05): 187-191+222 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  1984
  • HTML全文浏览量:  90
  • PDF下载量:  408
  • 被引次数: 24
出版历程
  • 收稿日期:  2014-09-16
  • 发布日期:  2016-03-04

目录

    /

    返回文章
    返回