一种新的高动态条件下实时高精度伪距计算方法

沙海, 陈华明, 吕志成, 李峥嵘, 欧钢

沙海, 陈华明, 吕志成, 李峥嵘, 欧钢. 一种新的高动态条件下实时高精度伪距计算方法[J]. 武汉大学学报 ( 信息科学版), 2016, 41(4): 523-528. DOI: 10.13203/j.whugis20140094
引用本文: 沙海, 陈华明, 吕志成, 李峥嵘, 欧钢. 一种新的高动态条件下实时高精度伪距计算方法[J]. 武汉大学学报 ( 信息科学版), 2016, 41(4): 523-528. DOI: 10.13203/j.whugis20140094
SHA Hai, CHEN Huaming, LV Zhicheng, LI Zhengrong, OU Gang. A New Method of Real-time High Precision Pseudorange Calculation in High Dynamic Circumstance[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 523-528. DOI: 10.13203/j.whugis20140094
Citation: SHA Hai, CHEN Huaming, LV Zhicheng, LI Zhengrong, OU Gang. A New Method of Real-time High Precision Pseudorange Calculation in High Dynamic Circumstance[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 523-528. DOI: 10.13203/j.whugis20140094

一种新的高动态条件下实时高精度伪距计算方法

基金项目: 国家自然科学基金(61403413)。
详细信息
    作者简介:

    沙海,博士生,主要从事卫星导航仿真测试方法研究。sandhai@163.com

    通讯作者:

    欧钢,博士,教授。ougang@nudt.edu.cn

  • 中图分类号: P228

A New Method of Real-time High Precision Pseudorange Calculation in High Dynamic Circumstance

Funds: The National Natural Science Foundation of China, No.61403413.
  • 摘要: 针对高动态全球导航卫星系统(Global Navigation Satellite System,GNSS)仿真系统中伪距计算精度与实时性的矛盾,提出了一种基于三阶Hermite插值的实时高精度伪距计算方法。首先通过插值算法获得卫星轨道并调整误差项计算顺序来优化伪距计算方法,然后在已知两个节点处的伪距及其导数后,采用三阶Hermite插值算法计算伪距变化模型参数,其中伪距导数通过二阶Lagrange插值多项式的求导公式求得。高动态仿真结果表明,在时间间隔取1 s时,最大伪距误差为0.638 mm,标准差为0.172 mm。
    Abstract: In highly dynamic GNSS simulation systems, since there is a contradiction between precision and calculated volume, a method of real-time high precision pseudorange calculation based on the third-order Hermite interpolation is proposed. In this method, a satellite orbit is computed by an interpolation algorithm and the sequences of the error computation is changed to optimize the pseudorange calculations. Then, by knowing the pseudoranges and derivatives for two nodes, the parameters of the pseudorange change model was computed by a third-order Hermite interpolation algorithm. The pseudorange derivative was obtained by the second order derivative Lagrange interpolation formula. The highly dynamic simulation results show that when the time interval is 1 s, the maximum pseudo-range error is 0.638 mm, and the standard deviation is 0.172 mm.
  • [1] Zhao Junxiang. The Study on Mathematical Model of High Dynamic and Intelligent GPS Satellite Signal Simulator's Software[D]. Beijing:Beijing University of Aeronautics and Astronautics, 2003(赵军祥. 高动态智能GPS卫星信号模拟器软件数学模型研究[D]. 北京:北京航空航天大学, 2003)
    [2] Lv Zhicheng. The Research of the High Dynamic Satellite Signal Simulator's Software[D]. Changsha:National University of Defense Technology, 2006(吕志成. 高动态卫星导航信号模拟器软件研究[D]. 长沙:国防科学技术大学, 2006)
    [3] Liu Xiaoli, Chen Dongdong, He Xi, et al. Simulation and Testing of FPLL Carrier Tracking Loops with High Dynamic GPS Signals[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11):1329-1333(刘晓莉, 陈东东, 贺喜, 等. FPLL载波跟踪环仿真及高动态GPS信号测试[J]. 武汉大学学报·信息科学版, 2014, 39(11):1329-1333)
    [4] Qi Wei, Chang Qing, Zhang Qishan, et al. Arithmetic of Doppler Simulation in High Dynamic Signal Simulator[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1252-1257(齐巍, 常青, 张其善, 等. 高动态信号模拟器中的多普勒模拟算法[J]. 航空学报, 2008, 29(5):1252-1257)
    [5] Zhang B, Liu G B, Jiao W, et al. High-order DDFS Applied in Simulated High Dynamic GNSS Signal Synthesis[C]. The 9th International Conference on Electronic Measurement & Instruments, Beijing, 2009
    [6] Song Y Y, Zhou H, Zeng T, et al. Algorithm and Realization of High Dynamic Satellite Signal Doppler Simulation Based on FPGA[C]. International Technical Meeting of the Satellite Division of the Institute of Navigation, San Diego, CA, 2010
    [7] Luo Yihong, Wang Wei, Xi Xiaoning. Real-time Simulation of Pseudo-range Generation of Navigation Satellite Signal Simulator[J]. Computer Simulation, 2009, 26(7):77-80(罗益鸿, 王威, 郗晓宁. 导航卫星信号模拟器伪距生成实时仿真研究[J]. 计算机仿真,2009, 26(7):77-80)
    [8] Liu Min, Wu Siliang. Method of High Accuracy Pseudorange Generation for Real-time High Dynamic GNSS Signal Simulator[J]. Transactions of Beijing Institute of Technology, 2011, 31(9):1053-1057(刘旻, 吴嗣亮. 实时高动态GNSS信号模拟器高精度伪距生成方法[J]. 北京理工大学学报, 2011, 31(9):1053-1057)
    [9] Ding Lijuan. Numerical Computation Method[M]. Beijing:Beijing Institute of Technology Press, 1997(丁丽娟. 数值计算方法[M]. 北京:北京理工大学出版社, 1997)
    [10] Korvenoja P, Piche R. Efficient Satellite Orbit Approximation[C]. The 13th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, USA, 2000
    [11] Horemuz M, Andersson J V. Polynomial Interpolation of GPS Satellite Coordinates[J]. GPS Solution, 2006, 10:67-72
    [12] Zheng Kun, Dong Xurong, Yang Yang, et al. A New Time Synchronization System Based on the GEO[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10):1163-1168(郑坤, 董绪荣, 杨洋, 等. 一种基于GEO星间链路的导航系统时间同步新体制[J]. 武汉大学学报·信息科学版, 2014, 39(10):1163-1168)
    [13] Thompson E. An Initial Look at Validating GPS Simulators Through the Enhanced Validation Test Plan[C]. The ION NTM, Salt Lake City, 2001
  • 期刊类型引用(4)

    1. 朱杰,郑加柱,陈红华,杨静,胡平昌,陆敏燕. 结合POI数据的南京市商业中心识别与集聚特征研究. 现代测绘. 2022(06): 34-39 . 百度学术
    2. 金澄,安晓亚,陈占龙,马啸川. 矢量居民地多边形多级图划分聚类方法. 武汉大学学报(信息科学版). 2021(01): 19-29 . 百度学术
    3. 张铭龙,何贞铭. 基于因子分析法的城市商业中心抽取研究. 地理空间信息. 2021(08): 58-60+64+5 . 百度学术
    4. 李卫东,张铭龙,段金龙. 基于POI数据的南京市空间格局定量研究. 世界地理研究. 2020(02): 317-326 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1379
  • HTML全文浏览量:  81
  • PDF下载量:  321
  • 被引次数: 7
出版历程
  • 收稿日期:  2014-12-24
  • 发布日期:  2016-04-04

目录

    /

    返回文章
    返回