北斗系统硬件延迟解算及精度分析

舒宝, 刘晖, 张明, 吴丹

舒宝, 刘晖, 张明, 吴丹. 北斗系统硬件延迟解算及精度分析[J]. 武汉大学学报 ( 信息科学版), 2016, 41(2): 279-284. DOI: 10.13203/j.whugis20140058
引用本文: 舒宝, 刘晖, 张明, 吴丹. 北斗系统硬件延迟解算及精度分析[J]. 武汉大学学报 ( 信息科学版), 2016, 41(2): 279-284. DOI: 10.13203/j.whugis20140058
SHU Bao, LIU Hui, ZHANG Ming, WU Dan. Evaluation and Analysis of BDS Instrumental Biases[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 279-284. DOI: 10.13203/j.whugis20140058
Citation: SHU Bao, LIU Hui, ZHANG Ming, WU Dan. Evaluation and Analysis of BDS Instrumental Biases[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 279-284. DOI: 10.13203/j.whugis20140058

北斗系统硬件延迟解算及精度分析

基金项目: 国家863计划(2007AA12Z309);国家973计划(2007CB310805)。
详细信息
    作者简介:

    舒宝,硕士生,主要从事GNSS数据处理及电离层建模研究。baos613@163.com

  • 中图分类号: P228

Evaluation and Analysis of BDS Instrumental Biases

Funds: The National High Technology Research and Development Program of China (863 Program), No.2007AA12Z309; the Major State Basic Research Development Program of China (973 Program), No.2007CB310805.
  • 摘要: 差分码偏差(differential code bias,DCB)又称硬件延迟,是影响用户导航定位授时(pointing navigation timing,PNT)服务的主要误差源之一。GPS卫星的硬件延迟通常是在电离层建模过程中和电离层模型系数一起解得的,但是北斗系统目前仅是一个区域导航定位系统,无法通过单系统获得高精度的硬件延迟解。提出通过联合GPS和北斗卫星观测数据用低阶球谐模型建模的方式确定北斗卫星和接收机的DCB。实验数据表明在现有条件下采用该方式解算北斗卫星的DCB的精度在0.3 ns左右,稳定性较好,且北斗地球静止轨道卫星(GEO)、倾斜同步轨道(IGSO)卫星DCB稳定性好于中轨道(MEO)卫星,北斗卫星DCB的稳定性要优于接收机。
    Abstract: Differential Code Bias is also called instrumental bias,and is one of the main error sources affecting PNT services. GPS instrumental bias is usually solved with ionospheric model coefficients. However, BDS method is now a regional satellite navigation system, which is difficult to obtain precise instrumental bias results using only BDS itself. In this paper, we propose a means to estimate BDS satellite and receiver instrumental biases using combined GPS/BDS observations in spherical harmonics modeling. The precision of BDS satellite instrumental bias was about 0.3 ns using this method, and the GEO/IGSO satellite instrumental bias precision was more stable than the MEO satellites. Besides, the precision of the satellite instrumental bias is better than receiver instrumental bias.
  • [1] Chang Qing. Correct way of GPS Hardware Delay[J]. Chinese Science Bulletin, 2000, 45(15):1676-1680(常青. GPS系统硬件延迟修正方法[J]. 科学通报, 2000, 45(15):1676-1680)
    [2] Zhang Hongpin. Modeling Global Ionospheric Delay with IGS Ground Based GNSS Observations[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1186-1189(章红平. 地基GNSS全球电离层延迟建模[J]. 武汉大学学报\5信息科学版, 2012, 37(10):1186-1189)
    [3] Wu Xiaoli, Ping Jinsong, Liu Li, et al. Hardware Delay Solution of Regional Satellite Navigation System[J]. Geomatics and Information Science of Wuhan University, 2011,36(10):1218-1221(吴晓莉, 平劲松, 刘利, 等. 区域卫星导航系统硬件延迟解算[J]. 武汉大学学报\5信息科学版, 2011, 36(10):1218-1221)
    [4] Zhang Hongpin. Research on Theories and Methods of Monitoring Ionopheric Delay Over China Based on Ground GPS[D]. Shanghai:Graduate University of Chinese Academy of Science,2006(章红平. 基于地基GPS的中国区域电离层监测与延迟改正研究[D]. 上海:中国科学院上海天文台, 2006)
    [5] Jin R, Jin S, Feng G. M_DCB:Matlab Code for Estimating GNSS Satellite and Receiver Differential Code Biases[J]. GPS Solutions, 2012, 16(4):541-548
    [6] Jiao W H, Geng C J, Ma Y H, et al. A Method to Estimate DCB of COMPASS Satellites Based on Global Ionosphere Map[C]. China Satellite Navigation Conference(CSNC), Guangzhou, China, 2012
    [7] Schaer S. Mapping and Predicting the Earth' s Ionosphere Using the Global Positioning System[D]. Bern, Germany:The University of Bern, 1999
    [8] Sardón E, Zarraoa N. Estimation of Total Electron Content Using GPS Data:How Stable are the Differential Satellite and Receiver Instrumental Biases[J]. Radio Science, 1997, 32(5):1899-1910
    [9] Li Z, Yuan Y, Fan L, et al. Determination of the Differential Code Bias for Current BDS Satellites[J]. IEEE Transactions on Geoscience & Remote sensing, 2014, 52(7):3968-3979
    [10] Montenbruck O, Hauschild A, Steigenberger P. Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps[J]. Navigation, 2014, 6(13):191-201
    [11] Li Z, Yuan Y, Li H, et al. Two-Step Method for the Determination of the Differential Code Biases of COMPASS Satellites[J]. Journal of Geodesy, 2012, 86(11):1059-1076
    [12] Cui Xizhang. General Surveying Adjustment[M]. Wuhan:Wuhan University Press, 2002(崔希章. 广义测量平差[M]. 武汉:武汉大学出版社,2002)
    [13] Geng Changjiang,Zhang Hongping,Zhai Chuanrun. Real time Estimation of DCB Using Kalman Filters[J]. Geomatics and Information of Wuhan University, 2009, 34(11):1309-1311(耿长江,章红平,翟传润. 应用Kalman滤波实时求解硬件延迟[J]. 武汉大学学报\5信息科学版, 2009, 34(11):1309-1311)
    [14] Zhou Zebo. Analysis of GPS Dual frequency Singer Differenced Receiver Hardware Delay[J]. Geomatics and Information of Wuhan University, 2009, 34(6):724-727(周泽波. 双频GPS接收机单差硬件延迟分析[J]. 武汉大学学报\5信息科学版, 2009, 34(6):724-727)
  • 期刊类型引用(11)

    1. 胡倬铭,袁海军,何秀凤,章浙涛,王进. MGEX差分码偏差产品对BDS-3伪距单点定位的影响研究. 武汉大学学报(信息科学版). 2024(05): 756-764 . 百度学术
    2. 袁海军,章浙涛,何秀凤,徐天扬,徐学永. 北斗三号卫星差分码偏差稳定性分析及其对单点定位的影响. 武汉大学学报(信息科学版). 2023(03): 425-432+452 . 百度学术
    3. 范优优,潘行伟. BDS相对定位精度分析. 测绘与空间地理信息. 2022(12): 110-113+116 . 百度学术
    4. 王含宇,宋淑丽,周伟莉,陈钦明. GNSS偏差及其研究进展. 天文学进展. 2021(01): 49-62 . 百度学术
    5. 王彦恒,潘树国,喻国荣,张建. 顾及系统间偏差的BDS/GPS单钟差定位法. 测绘工程. 2019(04): 7-12 . 百度学术
    6. 梅登奎,闻德保. MGEX北斗差分码偏差两种精确处理方法对比分析. 空间科学学报. 2019(05): 662-669 . 百度学术
    7. 袁兴明. 变异系数赋权法确定GNSS系统硬件延迟. 大地测量与地球动力学. 2019(12): 1287-1292 . 百度学术
    8. 王健,党亚民,王虎,刘洋洋,任政兆. 融合BDS/GPS/GLONASS解算卫星差分码偏差及精度分析. 测绘通报. 2018(10): 6-9+21 . 百度学术
    9. 杨柯,蔡成林,张首刚. 一种GNSS多星座的抗差伪距单点定位算法. 电讯技术. 2018(09): 1027-1033 . 百度学术
    10. 侯维君,李义红,徐步云,杨晓云,刘代志. 单接收机GNSS数据组合硬件延迟的联合求解方法. 空间科学学报. 2017(05): 601-607 . 百度学术
    11. 张强,赵齐乐,章红平,陈国. 利用北斗观测实验网解算北斗卫星差分码偏差. 武汉大学学报(信息科学版). 2016(12): 1649-1655 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  2026
  • HTML全文浏览量:  88
  • PDF下载量:  636
  • 被引次数: 19
出版历程
  • 收稿日期:  2014-05-28
  • 发布日期:  2016-02-04

目录

    /

    返回文章
    返回