大规模遥感影像全球金字塔并行构建方法
Parallel Construction of Global Pyramid for Large Remote Sensing Images
-
摘要: 金字塔模型是大规模遥感影像可视化的基础,是在保证精度的前提下,采用不同分辨率的数据来提高渲染速度,从而在网络环境下实现大规模数据共享、服务和辅助决策支持。在构造金字塔的过程中,由于遥感数据经常会突破内存的容量,同时会产生大量的小瓦片,小瓦片存贮非常耗时,传统的串行算法很难满足应用需求。本文提出了一种并行大规模遥感影像的全球金字塔构造算法,利用图形处理器(graphics processing unit, GPU)的高带宽完成费时的重采样计算,使用多线程实现数据的输入和输出,在普通的计算机上实现大规模影像的全球金字塔的快速构建。首先,采用二级分解策略突破GPU、CPU和磁盘的存储瓶颈;然后,利用多线程策略加速数据在内存和磁盘之间的传输,并采用锁页内存来消除GPU全局延迟的影响;最后,用GPU完成大规模的并行重采样计算,并利用四叉树策略提高显存中数据的重复利用率。实验结果表明,本文方法可以明显地提高全球金字塔的构造速度。Abstract: The pyramid model is the basis for visualization and processing of massive remote sensing data in a virtual globe system. It produces large amounts of data tiles in the process of building pyramids however, and the traditional serial CPU algorithm has difficulties satisfying requests for large images. This paper proposes a parallel global pyramid approach that exploits GPU capabilities and multi-threading to enable memory-intensive and computation-intensive tasks. A two-level decomposition strategy was developed to migrate the performance bottlenecks in data transfers among the GPU, CPU, and disk. A multi-threading strategy was used to reduce the delay between CPU and disk, and pin-memory for GPU global delay. Finally, the GPU is used to complete large-scale parallel resample computing and constructing an octree structure used to maximize reuse of data in the graphic memory. Experimental results show that the proposed method can significantly improve pyramid construction speed for large remote sensing images.