基于均值漂移和谱图分割的极化SAR影像分割方法及其评价

Segmentation of PolSAR Data Based on Mean-Shift and Spectral Graph Partitioning and Its Evaluation

  • 摘要: 提出了一种基于均值漂移和谱图分割的极化SAR(PolSAR)影像分割方法。首先,通过均值漂移算法对PolSAR影像进行过分割处理,并基于Wishart统计分布和假设检验的方法构建边缘检测器,充分利用了PolSAR影像的全极化信息提取边缘信息;然后,在过分割和边缘信息的基础上构建相似性度量矩阵,并采用归一化割准则实现PolSAR影像的分割。该算法充分利用了均值漂移算法过分割的特点,降低了谱图分割算法的运算代价,并结合谱图分割算法全局优化的优点改善了PolSAR影像的分割结果;最后,利用Radar-sat-2全极化影像进行了实验,并采用改进的分割效果评价方法实现了精度评价。实验表明,该算法有效地实现了PolSAR影像的分割,显著提高了谱图分割算法的效率,分割结果优良,分割精度优于eCognition软件中的多尺度分割方法。

     

    Abstract: A new segmentation approach of polarimetric synthetic aperture radar(PolSAR)data is pro-posed based on mean shift and spectral graph partitioning.First,Mean-shift algorithm is used to gen-erate the over-segmentation of PolSAR image.In order to extract edge information,we apply a set ofdetectors based on the Wishart distribution with a hypothesis testing method that has fully consideredthe polarization information in PolSAR images.Then,a similarity matrix is constructed based on theover-segmentation results and image edge information.The graph partitioning process is performed u-sing the normalized cut criterion.With this method,we improve the segmentation efficiency of spec-tral graph partitioning based on the over-segmentation results generated by Mean-shift.The quality ofsegmentation results is also improved as a result of the global optimization of spectral graph partitio-ning algorithm.We applied this method on Radarsat-2full polarization images and evaluated the seg-mentation results.The experiement showed that this scheme can realize PolSAR segmentation effec-tively,speed up the original algorithm,and also demonstrates a better result than eCognition’s Multi-resolution segmentation approach.

     

/

返回文章
返回