基于IGS的南北半球TEC非对称性研究

冯建迪, 姜卫平, 王正涛

冯建迪, 姜卫平, 王正涛. 基于IGS的南北半球TEC非对称性研究[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1354-1359. DOI: 10.13203/j.whugis20130673
引用本文: 冯建迪, 姜卫平, 王正涛. 基于IGS的南北半球TEC非对称性研究[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1354-1359. DOI: 10.13203/j.whugis20130673
FENG Jiandi, JIANG Weiping, WANG Zhengtao. Asymmetry of TEC Between the Southern and Northern Hemispheres Based on IGS Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1354-1359. DOI: 10.13203/j.whugis20130673
Citation: FENG Jiandi, JIANG Weiping, WANG Zhengtao. Asymmetry of TEC Between the Southern and Northern Hemispheres Based on IGS Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1354-1359. DOI: 10.13203/j.whugis20130673

基于IGS的南北半球TEC非对称性研究

基金项目: 国家自然科学基金资助项目(41374033);国家973计划资助项目(2013CB733301)。
详细信息
    作者简介:

    冯建迪,博士生,主要从事空间大地测量及卫星重力研究。E-mail:jdfeng@whu.edu.cn

  • 中图分类号: P228.41

Asymmetry of TEC Between the Southern and Northern Hemispheres Based on IGS Data

Funds: The National Natural Science Foundation of China, No.41374033; the National 973 Program of China, No.2013CB733301.
  • 摘要: 利用2000~2012年的IGS电离层TEC数据,研究了南北半球电离层TEC的非对称性。首先对南北半球TEC日平均值的不对称指数(AI)进行了研究,结果表明,AI的极大值的绝对值集中在0.4左右,极小值的绝对值集中在0.3左右,表明南北半球电离层TEC存在数值上的非对称性;通过傅里叶变换,发现AI存在1 a和1/3 a周期;每年北半球电离层TEC高于南半球电离层TEC的时间比例均大于50%,平均值为58%,表明了南北半球电离层TEC存在时间上的非对称性。然后进一步分析了南北半球TEC年平均值的差异,发现了北半球TEC年平均值高于南半球的规律,2000~2012年的南北半球TEC年平均值的不对称指数在0.036左右。最后从全球大气分布及运动规律的南北非对称性和热层年度变化赤道非对称性两个角度,对南北半球电离层TEC的非对称性产生的原因做了初步分析。
    Abstract: Using ionosphere TEC data provided by IGS for the years 2000 to 2012, we studied ionosphere TEC asymmetry between the southern and northern hemispheres. By analyzing the Asymmetry Index (AI) of the TEC daily mean between the southern and northern hemispheres, we found that the absolute value of the maximum concentration of AI was about 0.4, the absolute value of the minimum concentration was about 0.3,demonstrating that there is a numerical asymmetry in the ionosphere TEC between the southern and northern hemispheres. With the Fourier analysis method, we found that there is an annual cycle and a 1/3 annual cycle existing in Asymmetry Index; more than 50% when the northern hemisphere ionospheric TEC exceeds the southern hemisphere ionospheric TEC in a year. The mean value was 58%, suggesting a temporal asymmetry of the ionosphere TEC between the southern and northern hemispheres. We analyzed the annua difference of the mean TEC between the southern and northern hemispheres, finding that the annual mean TEC of the northern hemisphere is higher than that of the southern hemisphere, and the Asymmetry Index of the annual mean TEC between the southern and northern hemispheres during 2000-2012 was about 0.036. Taking the asymmetry in the atmospheric distribution and the movement rule and thermosphere into consideration, we discuss the reasons for the asymmetry of the ionosphere TEC between the southern and northern hemispheres.
  • [1] Li Zhenghang, Huang Jingsong. GPS Surveying and Data Processing[M]. Wuhan: Wuhan University Press, 2005 (李征航, 黄劲松. GPS测量与数据处理[M]. 武汉: 武汉大学出版社, 2005)
    [2] Li Zhenghang, Zhang Xiaohong. New Techniques and Precise Data Processing Methods of Satellite Navigation and Positioning[M]. Wuhan: Wuhan University Press, 2009 (李征航, 张小红. 卫星导航定位新技术及高精度数据处理方法[M]. 武汉: 武汉大学出版社,2009)
    [3] Chen Peng. Research on GNSS-based Ionospheric Tomography and Pre-earthquake Ionospheric Anomaly[J]. Acta Geodatica et Cartographia Sinica,2013, 42(3): 474 (程鹏. GNSS电离层层析及震前电离层异常研究[J]. 测绘学报, 2013, 42(3):474)
    [4] Zhang Xiaohong, Ren Xiaodong, Wu Fengbo, et al. A New Method for Detection of Pre-earthquake Ionospheric Anomalies[J]. Chinese J Geophys,2013, 56(2): 441-449 (张小红, 任晓东, 吴风波,等. 震前电离层TEC异常探测新方法[J]. 地球物理学报, 2013, 56(2): 441-449)
    [5] Cai Hua, Li Zishen, Wang Min, et al. Coseismic Ionospheric Disturbances of Mw7.9 Wenchuan Earthquake and Mw9.0 Japan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6):716-719 (蔡华, 李子申, 王敏,等. 汶川Mw7.9与日本Mw9.0地震同震电离层扰动研究[J]. 武汉大学学报·信息科学版, 2013,38(6):716-719)
    [6] Cai Changsheng, Gao Jingxiang, Li Zhenghang. Monitoring Seasonal Variations of Ionospheric TEC Using GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31 (5): 451-453 (蔡昌盛, 高井祥, 李征航. 利用GPS监测电离层总电子含量的季节性变化[J]. 武汉大学学报·信息科学版, 2006, 31 (5): 451-453)
    [7] Yu Tao, Wan Weixing, Liu Libo, et al. Using IGS Data to Analysis the Global TEC Annual and Semiannual Variation [J]. Chinese J Geophys, 2006, 49(4): 943-949(余涛,万卫星,刘立波,等.利用IGS数据分析全球TEC的周年和半年变化特性[J]. 地球物理学报,2006, 49(4): 943-949)
    [8] Zhao B, Wan W, Liu L, et al. Features of Annual and Semiannual Variations Derived from the Global Ionospheric Maps of Total Electron Content [J]. Ann Geophys,2007,25(12):2 513-2 527
    [9] Xu Chaoqian, Yao Yibin, Zhang Bao, et al. Impact of the Ionosphere and GPS Surveying Caused by Solar Storms on August 1,2010[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 689-693 (许超钤,姚宜斌,张豹,等. 2010-08-01太阳风暴对电离层及GPS测量的影响分析[J]. 武汉大学学报·信息科学版, 2013, 38(6): 689-693)
    [10] Lin Minhui. Ionosphere and Magnetosphere Coupling[D].Wuhan:Wuhan University, 2011 (林悯惠. 电离层与磁层耦合研究[D]. 武汉: 武汉大学, 2011)
    [11] Yao Yibin, Chen Jiajun, Chen Peng, et al. Analysis of Europe Ionspheric Responses During Magnetic Storms in 2003-2006 Using Ionspheric Tomographic Technology [J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 132-136 (姚宜斌,陈家君,陈鹏,等. 2003~2006年磁暴期间欧洲区域电离层三维层析及演变分析[J]. 武汉大学学报·信息科学版, 2014, 39(2): 132-136)
    [12] Jakowski N, Hoque M M, Mayer C. A New Global TEC Model for Estimating Transionospheric Radiowave Propagation Errors[J]. Journal of Geodesy, 2011, 85(12):965-974
    [13] Shi Chuang, Geng Changjiang, Zhang Hongping, et al. Precision Analysis of Ionosphere Tomography Based on EOF[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1 143-1 146(施闯, 耿长江, 章红平,等. 基于EOF的实时三维电离层模型精度分析[J]. 武汉大学学报·信息科学版, 2010, 35(10): 1 143-1 146)
    [14] A E,Zhang D H, Xiao Z,et al. Modeling Ionospheric foF2 by Using Empirical Orthogonal Function Analysis[J]. Ann Geophys, 2011, 29:1 501-1 515
    [15] Liu Libo, Zhao Biqiang, Wan Weixing, et al. Yearly Variations of Global Plasma Densities in the Topside Ionosphere at Middle and Low Latitudes[J]. J Geophys Res, 2007,112: A07303.doi: 10.1029/2007JA012283
    [16] Huang Jiang, Deng Baichang, Huang Linfeng, et al. Analysis of the Asymmetry of the Equatorial Ionization Anomaly in North-South Direction Using TEC Data of Ground IGS Observation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(4):130-137 (黄江, 邓柏昌, 黄林峰,等. 基于IGS的TEC赤道异常南-北不对称性分析[J]. 中山大学学报(自然科学版), 2013, 52(4):130-137)
    [17] Feltens J, Dow J M, Martin-Mur T J, et al. Verification of ESOC Ionosphere Modeling and Status of IGS Inter-comparison Activity[C]//The IGS Analysis Center Workshop. Maryl, USA: Silver Spring, 1996
    [18] Wu Xiaoli, Han Chunhao, Ping Jingsong. Monitoring and Analysis of Regional Ionosphere with GEO Satellite Observations[J]. Acta Geodatica et Cartographia Sinica, 2013 42(1):14-18 (吴晓莉, 韩春好, 平劲松. GEO卫星区域电离层监测分析[J]. 测绘学报, 2013 42(1):14-18)
    [19] Hernandez P M, Juan J M, Sanz J, et al. The IGS VTEC Maps: A Reliable Source of Ionospheric Information Since 1998[J]. Journal of Geodesy, 2009,83(3/4):263-275
    [20] Mendillo M, Huang C L, Pi X Q, et al. The Global Ionospheric Asymmetry in Total Electron Content[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2005,67(15):1 377-1 387
    [21] Guo J P, Forbes J M, Sutton E,et al.Effects of Solar Variability on Thermosphere Density from CHAMP Accelerometer Data[J].J Geophys Res , 2007, 112:A10308
    [22] Ma Zongjin, Song Xiaodong, Du Pinren,et al. Asymmetry Between the Southern and Northern Hemispheres of the Earth[J].Chinese J Geophys, 2002, 45(1): 26-32 (马宗晋, 宋晓东, 杜品仁,等. 地球南北半球的非对称性[J]. 地球物理学报, 2002, 45(1): 26-32)
    [23] Liu L, Wan W, Chen Y, et al.Solar Activity Effects of the Ionosphere: A Brief Review[J]. Chinese Science Bulletin, 2011, 56(12):1 202-1 211
    [24] Zhao Yifei. Climatology of Interactions Between the Northern and Southern Hemispheric Atmospheres and Cross-equatorial Flow[D]. Lanzhou: Lanzhou University, 2008 (赵煜飞. 南北半球大气的相互作用和越赤道气流的气候学研究[D]. 兰州: 兰州大学, 2008)
    [25] Bowman B R. The Semiannual Thermospheric Density Variation from 1970 to 2002 Between 200-1 100 km[C]. The 14th Space Flight Mechanics Meeting, Am Inst of Aeronaut and Astronaut, Maui, Hawaii, 2004
    [26] Fuller-Rowell T J.The “Thermospheric Spoon”: A Mechanism for the Semiannual Density Variation[J].J Geophys Res, 1998,103(A3):3 951-3 956
    [27] Maeda K,Hedin A E, Mayr H G.Hemispheric Asymmetries of the Thermospheric Semiannual Variation[J]. J Geophys Res, 1986,91:4 461-4 470
  • 期刊类型引用(11)

    1. 赵涛,叶世榕,罗歆琪,夏朋飞. GNSS-IR潮位反演中高仰角数据质量控制方法. 武汉大学学报(信息科学版). 2024(01): 68-76 . 百度学术
    2. 肖倩雨,周春霞,刘勇. 利用改进的亮温日较差法探测格陵兰冰盖表面融化. 武汉大学学报(信息科学版). 2024(10): 1931-1939 . 百度学术
    3. 李荣兴,何美茜,葛绍仓,程远,安璐. 东南极历史冰流速过估改正. 武汉大学学报(信息科学版). 2023(10): 1661-1669 . 百度学术
    4. 张冕,张春灌,赵敏,钟振华,袁炳强,周磊,韩梅. 地球磁异常EMAG2v3与全球重力数据库V29数据质量综合评估——以北极地区Aegir脊为例. 物探与化探. 2023(06): 1410-1416 . 百度学术
    5. 张金辉,李姗姗,杨光,范雕,凌晴. 联合CTD、海底地形和ARGO数据构建北太平洋深海时变温度模型. 测绘通报. 2023(12): 94-101+126 . 百度学术
    6. 徐天河,穆大鹏,闫昊明,郭金运,尹鹏. 近20年海平面变化成因研究进展及挑战. 测绘学报. 2022(07): 1294-1305 . 百度学术
    7. 徐天河,杨元元,穆大鹏,尹鹏. 近海海平面变化成因分析. 武汉大学学报(信息科学版). 2022(10): 1750-1757 . 百度学术
    8. 陈旭升,张云龙,张冠军. 优化局部均值分解在趋势信息提取中的应用. 测绘科学. 2022(11): 32-39 . 百度学术
    9. 房婷婷,付广裕. 卫星重力与地球重力场的文献计量分析. 地球科学进展. 2021(05): 543-552 . 百度学术
    10. 冯哲颖,岳林蔚,沈焕锋. 基于多源水文数据融合的GRACE水储量精度校正. 遥感技术与应用. 2021(03): 605-617 . 百度学术
    11. 刘冰石,邹贤才. ENSO影响下的西太平洋地区海陆水储量变化分析. 武汉大学学报(信息科学版). 2019(09): 1296-1303 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 22
出版历程
  • 收稿日期:  2014-07-09
  • 发布日期:  2015-10-04

目录

    /

    返回文章
    返回