利用多尺度几何特征向量的变化检测方法

Change Detection Based on Multi-scale Geometric Feature Vector

  • 摘要: 提出了一种利用多尺度几何特征向量的变化检测方法,其基本原理是基于多尺度影像分割将变化检测从传统的像素光谱空间转换到对象尺度空间,利用多尺度分割形成的几何特征向量进行变化检测。以陕西省渭南市为研究区域,使用本方法检测该区域2002~2009年的地表覆盖变化。从变化检测结果可以看出,本文方法的检测效果优于其他传统检测算法。

     

    Abstract: We present a change detection method based on multi-scale geometric feature vector(MSG-FV).The change analysis standard in this novel method is converted from pixel spectral space to seg- ment scale space.Context information beyond multi-scale imagery segmentation is applied to performchange detection.Specifically,this approach specifies number and values of multiple segmentationscales at first.Secondly,two-date imageries are segmented respectively using multiple scales.Third-ly,multi-scale geometric feature vector of a detection unit are constructed in different dates.Finally, 第40卷第5期陆 苗等:利用多尺度几何特征向量的变化检测方法627the change intensity between two-date multi-scale geometric feature vectors is calculated as the changestandard.The study area of Weinan in Shannxi province is tested to analyze the land cover changefrom 2000to 2009.In this sample area,three geometric features are used in this approach.Then,theoptimized geometric feature is compared to other existing methods(CVA,Correlation).The MSGFVapproach is proved to outperform other methods.

     

/

返回文章
返回