加乘性混合误差模型参数估计方法及其应用

师芸

师芸. 加乘性混合误差模型参数估计方法及其应用[J]. 武汉大学学报 ( 信息科学版), 2014, 39(9): 1033-1037. DOI: 10.13203/j.whugis20130355
引用本文: 师芸. 加乘性混合误差模型参数估计方法及其应用[J]. 武汉大学学报 ( 信息科学版), 2014, 39(9): 1033-1037. DOI: 10.13203/j.whugis20130355
SHI Yun. Least Squares Parameter Estimation in Additive/MultiplicativeError Models for Use in Geodesy[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1033-1037. DOI: 10.13203/j.whugis20130355
Citation: SHI Yun. Least Squares Parameter Estimation in Additive/MultiplicativeError Models for Use in Geodesy[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1033-1037. DOI: 10.13203/j.whugis20130355

加乘性混合误差模型参数估计方法及其应用

基金项目: 国家自然科学基金资助项目(41204006);陕西省教育厅专项资助项目(2013JK0960)
详细信息
    作者简介:

    师芸,博士,副教授,主要从事大地测量数据处理研究。

  • 中图分类号: P207.2

Least Squares Parameter Estimation in Additive/MultiplicativeError Models for Use in Geodesy

Funds: The National Naturel Science Foundation of China,No.41204006;the Special Foundation of Education Departmentof Shanxi Provincial Government,China,No.2013JK0960.
More Information
    Author Bio:

    SHI Yun,PhD,associate professor,specializes in geodetic data processing.

  • 摘要: 目的 扩展乘性误差模型的参数估计方法至加乘性混合误差模型,推导了其参数最小二乘、加权最小二乘参数估计,并在偏差分析的基础上推导了偏差改正加权最小二乘估计。模拟计算和分析验证了偏差改正加权最小二乘适用于加乘性混合误差模型的大地测量数据处理,具有二阶近似无偏性,且精度较高。
    Abstract: Objective Adjustment methods for parameter estionation were basically developed on the basis of addi-tive random error models.With advances in the technology for modern geodetic observation,measure-ment errors can change with functional models such as EDM,GPS and VLBI baselines.Thus,ran-dom errors in measurements are proportional to the true values of the measurements themselves.Ob-servational models of this type are called multiplicative error models.The purpose of this paper is tocomplement or extend the work of Xu and Shimada(2000)to mixed additive and multiplicative errormodels.We briefly discuss three least squares(LS)adjustment methods for parameter estimation inmixed additive and multiplicative error models.In case of the weighted LS adjustment,we explicitlydescribe the biases in the adjusted parameters.Then,we construct a bias-corrected weighted leastsquares estimator.Finally,we demonstrate that the bias-corrected weighted LS method is optimal andunbiased using a simulated example.
  • [1] Crowder M.On the Use of a Working CorrelationMatrix in Using Generalised Linear Models for Re-peated Measures[J].Biometrika,1995,82:407-410[2] Desmond A F.Optimal Estimating Functions,Qua-si-Likelihood and Statistical Modeling[J].J StatPlan Inference,1997,60:77-123[3] Heyde C C.Quasi-Likelihood and Its Applications[M].New York:Springer,1997[4] Kukusha A,Malenkoa A,Schneeweissb H.Opti-mality of Quasi-Score in the Multivariate Mean-Va-riance Model with an Application to the Zero-Inflat-ed Poisson Model with Measurement Errors[J].Statistics,2010,44:381-396[5] Fitzmauric G M.A Caveat Concerning Independ-ence Estimating Equations with Multivariate BinaryData[J].Biometrics,1995,51:309-317[6] Xu P L,Shimada S.Least Squares Parameter Esti-mation in Multiplicative Noise Models[J].Commu-nications in Statistics,2000,(B29):83-96[7] Xu P L.The Effect of Incorrect Weights on Estima-ting the Variance of Unit Weight[J].Stud GeophysGeod,2013,(57):339-352
计量
  • 文章访问数:  1557
  • HTML全文浏览量:  91
  • PDF下载量:  757
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-24
  • 修回日期:  2014-09-04
  • 发布日期:  2014-09-04

目录

    /

    返回文章
    返回