-
摘要: 目的 合成孔径雷达(synthetic aperture radar,SAR)影像分辨率的不断提高为建筑物提取提供了有效的数据支持,而传统像素级方法,提取建筑物的效果较差,精度较低。通过分形网络演化分割算法(fractal net evo-lution approach,FNEA)获取分析单元,利用对象级分析单元与邻近环境之间的上下文特征,提出了高亮邻接强度特征(highlight adjacent intensity,HAI)与亮点散射密度特征(shining point distribute density,SDD)的概念,然后结合上述两种特征进行对象级建筑物的提取。最后通过几组实验验证了基于面向对象特征方法比面向像素特征方法对高分辨率SAR建筑物提取具有更好的效果、更高的精度。Abstract: Objective With the improvement of SAR image resolution,it is now increasingly used as an effectivedata support for building extraction.However,the traditional pixel-based method is not practicable inbuilding extraction.Not only are the result not amiable,but also the accuracy is very poor.So in thispaper we will firstly apply FNEA algorithm(fractal net evolution approach)on SAR image to obtainanalysis units.Then contextual feature of those object-level units will be utilized to propose the con-ception of highlight adjacent intensity(HAL)and shining point distribute density(SDD).After thatthese two features will be combined to be used in the process of object-level building extraction.Final-ly,a couple of experiments are conducted show that an object-oriented method outperforms pixel-based methods in building extraction from high-resolution SAR images.
-
Keywords:
- object-level /
- high resolution /
- SAR image /
- building extraction /
- layover
-
-
期刊类型引用(6)
1. 赵霞,马新岩,余虔,王招冰. 高分辨率InSAR技术在北京大兴国际机场形变监测中的应用. 自然资源遥感. 2024(01): 49-57 . 百度学术
2. 于建游,杜宪. 路桥膨胀土区域地表变形三维时序InSAR监测方法. 工程勘察. 2024(05): 54-59 . 百度学术
3. 赵勇,张锐,邢学敏,凌时光,郑冠峰. 基于SBAS-InSAR技术的膨胀土边坡变形失稳特征. 公路交通科技. 2024(08): 22-30 . 百度学术
4. 陈聪,董燕. 基于哨兵双极化数据的城市地表形变监测方法. 城市勘测. 2024(05): 100-105 . 百度学术
5. 任志鹏,张双成,司锦钊,惠文华,李思洁子,胡兴群,张昌波. 综合SBAS-InSAR与CR-InSAR解译安康膨胀土机场形变. 大地测量与地球动力学. 2023(11): 1112-1116+1128 . 百度学术
6. 赵峰,张雷昕,王腾,汪云甲,闫世勇,范洪冬. 城市地表形变的双极化Sentinel-1数据极化时序InSAR技术监测. 武汉大学学报(信息科学版). 2022(09): 1507-1514 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 1275
- HTML全文浏览量: 76
- PDF下载量: 594
- 被引次数: 12