简化自协方差最小二乘噪声估计的SINS静基座初始对准

林旭, 罗志才, 周波阳

林旭, 罗志才, 周波阳. 简化自协方差最小二乘噪声估计的SINS静基座初始对准[J]. 武汉大学学报 ( 信息科学版), 2014, 39(5): 586-590. DOI: 10.13203/j.whugis20120172
引用本文: 林旭, 罗志才, 周波阳. 简化自协方差最小二乘噪声估计的SINS静基座初始对准[J]. 武汉大学学报 ( 信息科学版), 2014, 39(5): 586-590. DOI: 10.13203/j.whugis20120172
LINXu, LUO Zhicai, ZHOU Boyang. SINS Stationary Initial Alignment Based on SimplifiedAutocovariance Least-Squares Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 586-590. DOI: 10.13203/j.whugis20120172
Citation: LINXu, LUO Zhicai, ZHOU Boyang. SINS Stationary Initial Alignment Based on SimplifiedAutocovariance Least-Squares Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 586-590. DOI: 10.13203/j.whugis20120172

简化自协方差最小二乘噪声估计的SINS静基座初始对准

基金项目: 国家自然科学基金资助项目(41174062,41131067);中央高校基本科研业务费专项资金资助项目(2012214020206);地球空间环境与大地测量教育部重点实验室开放基金资助项目(12-02-09)
详细信息
    作者简介:

    林旭,博士生,主要从事航空重力测量数据处理与应用研究。

    通讯作者:

    罗志才

  • 中图分类号: P227.2

SINS Stationary Initial Alignment Based on SimplifiedAutocovariance Least-Squares Method

Funds: The National Natural Science Foundation of China, Nos. 41174062, 41131067; the Fundamental Research Funds for the Central Universities , No. 2012214020206; the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy , Ministry of Education , Wuhan University, No. 12-02-09.
More Information
    Author Bio:

    LINXu: LIN Xu,PhD candidate,majors in airborne gravimetry data processing and applications.

    Corresponding author:

    LUO Zhicai: Luo Zhicai

  • 摘要: 目的 研究了观测噪声统计特性未知的情况下,简化的自协方差最小二乘噪声估计方法在捷联惯性导航系统静基座初始对准中的应用。该算法采用迭代计算的策略,同时进行噪声估计和初始姿态修正,估计精度较高。通过数值方法对此算法的正确性和有效性进行了验证。
    Abstract: Objective Initial alignment is one of the key technologies of the strapdown inertial navigation system.The applications of the strapdown inertial navigation system however,are directly affected by the ac-curacy of initial alignment.Kalman filtering is an effective algorithm for SINS initial alignment,butthe optimal estimates are based on the filtering model and the noise covariance matrices which are al-ready known.This paper focuses on the simplified autocovariance least-squares noise estimation meth-od in the strapdown inertial navigation system’s stationary initial alignment.The proposed method es-tablishes a relationship between unknown measurement noise and the autocovariance.The noise co-variance can be estimated by solving it as a linear least squares problem.The proposed method esti-mates measurement noise and corrects INS attitude by iterative calculation.Simulation results showthat the proposed method performs very well in noise covariance estimation and strapdown inertialnavigation system initial alignment.
计量
  • 文章访问数:  1371
  • HTML全文浏览量:  62
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-16
  • 修回日期:  2014-05-04
  • 发布日期:  2014-05-04

目录

    /

    返回文章
    返回