一种车载激光点云数据中道路自动提取方法

刘如飞, 卢秀山, 岳国伟, 田茂义

刘如飞, 卢秀山, 岳国伟, 田茂义. 一种车载激光点云数据中道路自动提取方法[J]. 武汉大学学报 ( 信息科学版), 2017, 42(2): 250-256. DOI: 10.13203/j.whugis20140959
引用本文: 刘如飞, 卢秀山, 岳国伟, 田茂义. 一种车载激光点云数据中道路自动提取方法[J]. 武汉大学学报 ( 信息科学版), 2017, 42(2): 250-256. DOI: 10.13203/j.whugis20140959
LIU Rufei, LU Xiushan, YUE Guowei, TIAN Maoyi. An Automatic Extraction Method of Road from Vehicle-Borne Laser Scanning Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 250-256. DOI: 10.13203/j.whugis20140959
Citation: LIU Rufei, LU Xiushan, YUE Guowei, TIAN Maoyi. An Automatic Extraction Method of Road from Vehicle-Borne Laser Scanning Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 250-256. DOI: 10.13203/j.whugis20140959

一种车载激光点云数据中道路自动提取方法

基金项目: 

国家重大仪器设备开发专项 No.2013YQ120343

海岛(礁)测绘技术国家测绘地理信息局重点实验室项目 

山东科技大学人才引进科研启动基金项目资助 No. 2016RCJJ004

详细信息
    作者简介:

    刘如飞,博士,讲师,主要研究方向为车载激光扫描数据处理、近景摄影测量、3S技术集成与应用。liurufei_2007@126.com

    通讯作者:

    岳国伟,博士,讲师. E-mail:flashygw@163.com.

  • 中图分类号: P208;P237

An Automatic Extraction Method of Road from Vehicle-Borne Laser Scanning Point Clouds

Funds: 

The National Key Scientific Instrument and Equipment Development Projects No.2013YQ120343

the Key Laboratory of Surveying and Mapping Technology on Island and Reef, National Administration of Surveying, Mapping and Geoinfomation 

Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents No. 2016RCJJ004

More Information
    Author Bio:

    LIU Rufei, PhD, specializes in mobile laser scanning data processing, aerial image processing and integration of 3S technology and application.liurufei_2007@126.com

    Corresponding author:

    YUE Guowei, PhD, lecturer. E-mail:flashygw@163.com.

  • 摘要: 针对车载移动测量系统数据采集特点,构建车载激光点云扫描线索引,提出了一种基于扫描线索引的道路路面与路边点云稳健分类法。首先通过分析扫描线上不同地物剖面的空间分布特征,进行剖面激光点生长聚类,形成完整的地物剖面目标点集;然后根据点集的几何特征因子判断点集类型;最后利用相邻多条扫描线上路边点分布规律进行去噪。对车载移动测量系统获取的两份点云数据进行实验,路面与路边提取的平均完整率分别为94.4%、86%,平均准确率分别为98.9%、99.1%。实验分析表明,该方法能有效减少粗糙路面点的错误分类,适应不同的道路路边条件,降低独立地物对路边提取的干扰。
    Abstract: Laser scanning lines index are built from original vehicle-borne laser scanning data. An classification method for automatic extraction of road pavement and side is proposed. Firstly, through the analysis of the spatial distribution characteristics of different objects in scanning lines, a clustering of objects profile points are applied. Then, according to the geometric features of the point set, the type of point set is determined. Finally, the distribution of the edge points of the adjacent multiple scanning lines is used to de-noise. Two point cloud data provided by Vehicle Survey System are used in the experiment. The average integrity rate of road pavement and side extraction are 94.4%, 86%, the average accuracy rate are 98.9%, 99.1%.The experiment shows that this method can effectively decrease the error classification of pavement points, reduce the objects interference to the roadside extraction, and adapt to different road conditions of urban street.
  • 图  1   数据处理流程图

    Figure  1.   Flow Chart of Data Processing

    图  2   双向扫描线索引示意图

    Figure  2.   Diagram of Two Direction Scan Line Index

    图  3   扫描线点生长示意图

    Figure  3.   Diagram of Point Growth of Scanning Line

    图  4   扫描线不同地物剖面点高程分布

    Figure  4.   Elevation Distribution of Different Object Profile Points

    图  5   扫描线不同地物剖面点水平投影距离分布

    Figure  5.   Horizontal Distance Distribution of Different Object Profile Points

    图  6   窗口移动示意图

    Figure  6.   Diagram of Window Moving

    图  7   路边点去噪

    Figure  7.   Roadside Point Devoicing

    图  8   路段1与路段2道路剖面

    Figure  8.   Road Profile of Road One and Road Two

    图  9   路段1结果与高差斜率法对比显示

    Figure  9.   Result Display and Comparison with the Elevation and Slope Method of Road One

    图  10   路段2结果与高差斜率法对比显示

    Figure  10.   Result Display and Comparison with the Elevation and Slope Method of Road Two

    表  1   路面与路边完整率分析

    Table  1   Integrity Rate Analysis of Pavement and Side

    路段 路面 路边
    RP/m2 CP/m2 PIR/% RS/m CS/m SIR/%
    路段1 17 555.9 16 007.6 91.2 2 499.1 2 032.2 81.3
    路段2 20 015.3 19 507.4 97.5 4 009.4 3 632.6 90.6
    下载: 导出CSV

    表  2   路面与路边准确率分析与对比

    Table  2   Accuracy Analysis and Comparison of Pavement and Side

    处理算法 路面 路边
    TP/m2 FP/m2 PAR/% PER/% TS/m FS/m SAR/% SER/%
    高差斜率法 路段1 16 039.3 186.6 98.8 1.2 2 057.7 186.9 91.7 8.3
    路段2 17 554.3 362.5 98.0 2.0 3 045.5 256.3 92.2 7.8
    本文方法 路段1 16 007.6 81.6 99.5 0.5 2 032.2 5.6 99.7 0.3
    路段2 19 507.4 340.5 98.3 1.7 3 632.6 54.6 98.5 1.5
    下载: 导出CSV
  • [1]

    Pu S, Rutzinger M, Vosselman G,et al. Recognizing Basic Structures from Mobile Laser Scanning Data for Road Inventory Studies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(6):S28-S39 doi: 10.1016/j.isprsjprs.2011.08.006

    [2]

    Li J. Automated Extraction of Street-scene Objects from Mobile Lidar Point Clouds[J].International Journal of Remote Sensing,2012,33(18):5839-5861 doi: 10.1080/01431161.2012.674229

    [3]

    Boyko A, Funkhouser T. Extracting Roads from Dense Point Clouds in Large Scale Urban Environment[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(6):S2-S12 doi: 10.1016/j.isprsjprs.2011.09.009

    [4]

    Chen Y Z, Zhao H J, Shibasaki R. A Mobile System Combining Laser Scanners and Cameras for Urban Spatial Objects Extraction[C]. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics,Hong Kong, China,2007

    [5]

    Barber D, Mills J, Smith-Voysey S. Geometric Validation of a Ground-based Mobile Laser Scanning System[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008,63(1):128-141 doi: 10.1016/j.isprsjprs.2007.07.005

    [6] 史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200502001.htm

    Shi Wenzhong, Li Bijun, Li Qingquan. A Method for Segmentation of Range Image Captured by Vehicle-borne Laserscanning Based on the Density of Projected Points[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(2):95-100 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200502001.htm

    [7]

    Jaakkola A, Hyyppä J, Hyyppä H, et al. Retrieval Algorithms for Road Surface Modelling Using Laser-based Mobile Mapping[J]. Sensors,2008, 8(9):5238-5249 doi: 10.3390/s8095238

    [8]

    El-Halawany S, Moussa A, Lichti D D, et al. Detection of Road Curb from Mobile Terrestrial Laser Scanner Point Cloud[C]. ISPRS Calgary 2011 Workshop, Calgary, Canada, 2011

    [9]

    Zhou L, Vosselman G.Mapping Curbstones in Airborne and Mobile Laser Scanning Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,18(1):293-304 http://cn.bing.com/academic/profile?id=8728a4c8e2078be918a5eb3c003b32e9&encoded=0&v=paper_preview&mkt=zh-cn

    [10]

    Dinesh M, Ryosuke S. Auto-extraction of Urban Features from Vehicle-Borne Laser Data. Symposium on Geospatial Theory[C]. Processing and Applications, Ottawa, Canada,2002

    [11]

    Yuan X,Zhao C X,Cai Y F,et al. Road-Surface Abstraction Using Ladar Sensing[C].200810th International Conference on Control, Automation, Robotics and Vision, Vietnam, 2008

    [12] 刘如飞,田茂义,许君一. 车载激光扫描数据中高速公路路面点滤波[J]. 武汉大学学报·信息科学版,2015,40(6):751-755 http://ch.whu.edu.cn/CN/abstract/abstract3271.shtml

    Liu Rufei, Tian Maoyi,Xu Junyi. Expressway Road surface Point filtering of Mobile Laser Scanning Data[J].Geomatics and Information Science of Wuhan University,2015,40(6):751-755 http://ch.whu.edu.cn/CN/abstract/abstract3271.shtml

    [13] 方莉娜,杨必胜.车载激光扫描数据的结构化道路自动提取方法[J]. 测绘学报,2013,42(2):260-267 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201302017.htm

    Fang Lina, Yang Bisheng. Automated Extracting Structural Roads from Mobile Laser Scanning Point Clouds[J]. Acta Geodaetica et Cartographica Sinica,2013,42(2):260-267 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201302017.htm

图(10)  /  表(2)
计量
  • 文章访问数:  3630
  • HTML全文浏览量:  252
  • PDF下载量:  1104
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-08
  • 发布日期:  2017-02-04

目录

    /

    返回文章
    返回